Импульсный паяльник своими руками

У импульсного паяльника основные отличия от обычного заключаются в следующем:

  • в качестве нагревательного элемента выступает вторичная обмотка трансформатора (собственно, это и есть причина, ограничивающая применение данного типа паяльников при пайке некоторых видов электронного оборудования);
  • быстрый нагрев жала до рабочей температуры;
  • низкая потребляемая мощность;
  • возможность управлять мощностью (у некоторых моделей).

Принцип работы

Если кто-то планирует сделать электронный паяльник самостоятельно, то принцип его работы должен совпадать с оригинальным изделием. Точность соблюдения параметров тут не имеет большого значения. Главное, чтобы самодельный импульсный паяльник работал, как и покупной, а также выполнял те же функции.

В дежурном режиме основной принцип работы основывается на том, что генератор в микросхеме устройства может функционировать прерывисто. Микросхема подает импульсы на трансформатор. В то же время сам трансформатор подает напряжение на конденсатор и диодный мост. По этой схеме оно достигает жала паяльника, но напряжения еще не достаточно для начала разогрева до нужной температуры. Он находится только в подогретом состоянии в «ждущем режиме».

Схема импульсного паяльника должна содержать в себе специальный переключатель, который и создает особенность работы устройства. При нажатии кнопки, паяльник переходит в рабочий режим. Здесь срабатывает емкость из нескольких конденсаторов, которая суммируется. Благодаря этому генератор начинает работать на понижение частоты до того момента, когда трансформатор полностью не насытится. После этого мощность импульсом подается в жало, которое моментально разогревается.

Преимущества и недостатки

Несколько слов о достоинствах и недостатках этих конструкций. Итак, в активе имеем следующие положительные качества:

  • импульсный паяльник пистолет удобно держать в руке, кнопка включения находится под указательным пальцем;
  • быстрый разогрев паяльника позволяет держать его отключенным, производя включение только по необходимости, что экономит электроэнергию;
  • имеющаяся подсветка создаёт дополнительные удобства при пайке.

Имеются некоторые недостатки, проявляющиеся в работе импульсных устройств. Один из них связан с напряжённым режимом работы жал таких паяльников. Дело в том, что от величины сечения петли жала зависит скорость нагрева.

Если брать проволоку большого сечения, время разогрева, да и величина требуемого тока, увеличивается. Более тонкая проволока греется быстрее, однако и быстрее сгорает.

В отличие от обычного паяльника, жало импульсного прибора служит гораздо меньше. По этой причине в конструкциях следует предусматривать возможность лёгкой замены этого элемента.

Самодельное оборудование

Мастеров по ремонту электроники очень много, поэтому спрос на импульсные паяльники довольно стабильный. Но всё же некоторые стараются изготовить такой паяльник из электронного трансформатора своими руками. Толкают их на это подобные причины:

  • Дороговизна импортного высококачественного оборудования.
  • Некачественная продукция китайского происхождения.

Простейший высокочастотный нагреватель

Для человека, немного знакомого с электротехникой, изготовить инструмент несложно. Для этого понадобятся:

  • Трансформатор.
  • Шинка и проволока из меди.
  • Материал для изготовления ручки.

Для начала необходимо найти схему импульсного паяльника. Сделать это несложно с помощью интернета.

Первичная обмотка соединена с питающим элементом, а вторичная — с жалом и сигнальной лампой. Такая простота делает устройство надёжным и неприхотливым к качеству напряжения. Большинство недорогих изделий в своей основе имеют именно такую схему.

Для изготовления требуется наличие малогабаритного силового трансформатора. Его можно взять в блоке питания какой-либо ненужной или сломанной бытовой техники. Его схема будет подвергнута модернизации. Сначала необходимо осторожно вскрыть корпус трансформатора и подобраться к обмотке, которую нужно аккуратно размотать. Из смотанного провода навивается новая первичная обмотка в количестве 1300 оборотов. Это можно сделать вручную или на специальном намоточном станке.

Вторичная обмотка представляет собой один виток из медной шины, изолированной стеклотканью или термоусадочной трубкой. К ней будет винтами подсоединяться жало. Ручку можно сделать из любого диэлектрического материала. Это может быть дерево или текстолит. Возможно использование старой рукоятки от ненужного паяльника или другого устройства. Вариантов много.

Ещё один компонент — выключатель, который должен обеспечивать кратковременную подачу напряжения на вторичку. Поэтому нужно приспособление без жёсткой фиксации по принципу: пока нажато — работает. Постоянное присутствие на вторичной обмотке электрического тока ведёт к её разрушению. После того как все компоненты готовы, их нужно аккуратно собрать и закрепить. Такая конструкция позволяет периодически менять наконечник для коррекции толщины пайки.

Прибор из электронного трансформатора

Если поиски хорошего недорогого импульсного паяльника не увенчались успехом, эти средства можно потратить на приобретение пускового двенадцативольтового устройства для энергосберегающих или галогеновых ламп. В нём есть трансформатор, который предстоит немного усовершенствовать, предварительно демонтировав из корпуса. Имеющаяся вторичная обмотка для использования в качестве силовой слабовата, поэтому её нужно аккуратно снять и изготовить новую из медной проволоки сечением 1 квадратный миллиметр.

Модернизированная обмотка будет состоять из двух или трёх витков. А также необходима рукоятка, кнопка без удержания во включённом положении и лампочка для индикации. Всё это подбирается из имеющихся под рукой компонентов. Жало такого паяльника нагревается в один момент, однако временем постоянного накаливания злоупотреблять не следует.

Изготовление жала

В этом качестве используется медная проволока, подсоединённая к держателям на вторичной обмотке. Толщину подбирают экспериментальным методом, ориентируясь на скорость нагрева. Начинают подбор с провода сечением 1−2 квадрата. Здесь важно найти золотую середину: слишком толстое жало будет медленнее нагреваться, а тонкое — быстрее изнашиваться. Оптимальное время накаливания наконечника составляет от 4 до 8 секунд.

Увеличение диаметра жала ведёт к возрастанию потребляемой электропаяльником мощности и увеличению нагрева силовой обмотки. Поэтому подбор диаметра наконечника нужно проводить тщательно, с каждым новым размером проведя несколько паек. Неправильный выбор может привести к возгоранию всей конструкции.

Как сделать блок питания из энергосберегающей лампы

Может показаться, что это дело так называемых радиолюбителей, опытных мастеров работы со схемами, электроприборами.

Но на деле оказывается, что заниматься «оживлением» старой техники может практически любой человек, сталкивающийся в быту с электрическими устройствами. Достаточно работать по плану и иметь схему устройства перед глазами. Мы подготовили наглядную электросхему и поэтапный план работы над блоком из ЭСЛ.

Разбираем лампу

Будьте осторожны, когда разбираете ЭСЛ. Повредив целостность колбы, можно выпустить вредные пары ртути, которые быстро распространяются вокруг. Рекомендуем аккуратно, не спеша поддевать маленькой отверткой в месте шва.

Когда вам открылась схема, соединенная с колбой четырьмя выводами питания, отрежьте их и внимательно рассмотрите состояние элементов. Внешне можно понять, что они вышли из строя, по подгоревшим местам, вздутиям; могут отпаяться концы соединений. После внешнего осмотра необходимо прозвонить электрическую цепь. По опыту радиолюбителей в ЭСЛ часто портятся конденсаторы и резисторы.

Выходят из строя чаще всего именно конденсаторы и резисторы по причине частых включений и выключений энергосберегающей лампы. Если реже «щелкать выключателем», можно сохранить жизнь ЭСЛ на чуть более долгий срок.

Запасные элементы берутся из схем других энергосберегающих ламп, отложенных вами для будущего блока питания. После того, как из нескольких схем соберете одну, можно двигаться дальше.

Читайте также  Как разрезать стекло стеклорезом

Вам нужно решить, блок питания какой мощности вы хотели бы собрать. Если мощность блока равна мощности энергосберегающей лампочки, то больших изменений не потребуется; если же захотите увеличить мощность блока питания, то нужно добавить вторичную обмотку, выложенную медным проводником.

Подготовительные работы

Итак, мы уже удалили контакты, идущие до колбы. Красным на схеме изображен удаленный нами узел ЭСЛ. На оставшиеся концы в схеме садим перемычку. Для повышения выдаваемой мощности нужно добавить к дросселю (на схеме L5) дополнительную (вторичную) обмотку. Появится резерв мощности блока питания за счет нее.

Помимо этого, добавляем новые детали в схему:

  • конденсаторы (на схеме C9, С10)
  • мост диодный (VD14-VD17)

Поместите изоляцию между обмотками. Советуем использовать политетрафторэтиленовую ленту.

Нужное количество витков для вторичной обмотки определяется в несколько этапов:

  1. Укладывается временная обмотка около десяти витков и соединяется с нагрузочным сопротивлением, имеющим характеристики в пределах 30-ти ватт и более, и собственно самим сопротивлением от 5 до 6 Ом;
  2. После подключения питания измеряется напряжение на нагрузочном сопротивлении;
  3. Полученные цифры напряжения делятся на число витков – так узнается, какое напряжение приходит на один виток;
  4. Расчет нужного количества витков для питания постоянной обмотки и подбор диаметра проводника для вторичной обмотки.

Диаметр вторичной обмотки советуем выбрать 0,5 мм.

Количество нужных витков:

X = Uвых (достигаемое напряжение БП) /Uвит (напряжение одного витка)

Кардинальные преобразования

Однако надёжней сделать импульсный блок питания с нуля, поискав трансформатор с нужными характеристиками в старой электронике. Заводские трансформаторы будут гораздо долговечней самоделки. И не нужно к тому же высчитывать количество витков по формуле, достаточно присоединить паяльником концы обмотки трансформатора к схеме.

Если вы хотите сильно увеличить мощность блока питания, в несколько раз, то нужно выпаять старый дроссель и присоединить новый (на схеме ниже обозначен как TV2). Подсоединяем к блоку два диода, составляющих выходной выпрямитель (на схеме VD14, VD15), заменяем диоды на входном выпрямителе с большей мощностью (на схеме RO) и ставим конденсатор с большей емкостью (на схеме CO). Подбирать конденсатор необходимо в пропорциях 1 Ватт выходной мощности = 1 микрофарад. На схеме изображено сто микрофарад на сто ватт.

Опробовать блок питания можно на лампочке аналогичной мощности. Главное следить за тем, чтобы температура трансформатора нашего блока не превышала 60ºС, а транзисторов 80ºС. Измеряется температура ртутными либо спиртовыми термометрами. Также есть так называемые заводские термопары и термосопротивления. Опытный радиолюбитель всегда имеет такие приспособления под рукой.

Советуем посмотреть видео-инструкцию:

Принцип действия

Основное отличие импульсного паяльника заключается в способе нагрева его жала, которое являет собой согнутую дугой медную проволоку, (наподобие буквы «U»), по которой пропускают электрический ток большой силы, необходимый для достижения требуемой температуры.

Разогревающаяся медная проволока в виде жала

Блок питания такого паяльника должен обеспечивать выходное напряжение 1-2 В и ток 25-50 А. До недавнего времени для этих целей активно применялся обычный трансформатор, у которого вторичная обмотка выполнена в виде нескольких витков медной шины относительно большого сечения (в несколько раз большего, чем сечение провода жала, во избежание нагрева самой обмотки во время работы).

Также большим сечением должны обладать токопроводящие шины, выполняющие функцию держателя жала, поэтому блок питания помещают в корпус импульсного паяльника, который из-за револьверной ручки напоминает пистолет.

Типичная форма промышленного импульсного паяльника

Но изрядные габариты и ощутимый вес понижающего трансформатора делают неудобной работу с паяльником, поэтому в последнее время стали применяться импульсные блоки питания, которые значительно меньше и легче.

Используемые источники тока для питания импульсных паяльников

Импульсные паяльники имеют такое название ещё и из-за усовершенствования и миниатюризации блоков питания, применяемых в данных инструментах, использующих электронную схему преобразования импульсов напряжения высокой частоты, хотя может использоваться и обычный понижающий трансформатор подходящей мощности.

Поэтому, создавая импульсный паяльник своими руками, нужно решить, какой блок питания будет использоваться – с понижающим трансформатором, или электронный. Преимущество первого варианта состоит в чрезвычайно простой электрической схеме – выводы вторичной обмотки напрямую подключаются к токопроводящим шинам.

Пример самодельного паяльника с понижающим трансформатором

К недостаткам следует отнести габариты и вес прибора, а также ощутимую вибрацию во время работы. К тому же, первичная обмотка очень часто перегорает из-за нестабильного напряжения и частых перегрузок, и невозможно самостоятельно осуществить её перемотку без специального оборудования и соответствующего обмоточного провода.

Поэтому, многие радиолюбители, ремонтируя вышедший из строя импульсный паяльник на базе понижающего трансформатора, используют подходящий электронный блок питания, заменяя вторичную обмотку.

Сгоревший понижающий трансформатор в промышленном паяльнике Громоздкий трансформатор заменен на миниатюрную электронную плату

Процесс переделки понижающего трансформатора

Изготовляя импульсный паяльник, для его питания можно использовать имеющийся понижающий трансформатор, который может быть с любым типом магнитопровода, главное, чтобы он подходил по мощности в пределах 50-150 Вт.

Первичную сетевую обмотку оставляют без изменений, а вторичную удаляют, разобрав трансформатор. Поскольку для разогрева жала паяльника решающее значение имеет ток, то точным расчётом количества витков можно пренебречь, сосредоточив усилия на достижении максимально возможной площади поперечного сечения обмоточной шины.

Как правило, будет достаточно двух витков медной шины или плетёного гибкого медного провода, сечением 6-10 мм², которые нужно расположить таким образом, чтобы они не замыкались друг с другом и сердечником трансформатора.

Медная шина в виде вторичной обмотки

В случае с использованием медной шины в качестве обмотки, её выводы будут выполнять функции держателя жала.

Продолжение обмотки является держателем жала

Наматывать упругую шину следует осторожно, чтобы не повредить первичную обмотку, после чего её следует проверить на обрыв и замыкание.

Переделка электронного трансформатора

Создавая импульсный паяльник своими руками с «нуля», или используя готовый корпус с держателями, многие радиолюбители применяют в качестве трансформатора имеющийся электронный блок питания для галогенных ламп на 12В, мощностью 50-150Вт, при этом также переделывая вторичную обмотку.

Электронный трансформатор (импульсный блок питания галогенных ламп)

Поскольку никаких других изменений в устройстве не требуется, типичная электрическая принципиальная схема импульсного блока питания приводится лишь в качестве примера, без разбора функций элементов и описания принципа работы.

Импульсный трансформатор на схеме, подлежащий переделке

В данном случае, нужно помнить, что для достижения требуемого напряжения в импульсном трансформаторе требуется не такие большие габариты магнитопровода и меньшее количество витков, поэтому для переделки вторичной обмотки может быть достаточно одного витка.

Один выходной виток на тороидальном магнитопроводе импульсного трансформатора

Если у имеющейся шины или гибкого провода сечение недостаточное, то его можно увеличить путём параллельного подключения витков обмоток.

Подключение выводов параллельных витков к держателю жала Параллельные витки из гибкого плетеного медного многожильного провода

Поскольку старую вторичную обмотку можно удалить, не разбирая трансформатор, а создать новую можно просто вставив один виток в пустоты между изоляцией и магнитопроводом, процесс переделки импульсного блока питания не является слишком сложным делом даже для начинающего мастера.

Читайте также  34063 datasheet

Изготовление жала паяльника

В качестве жала паяльника нужно использовать медную проволоку, диаметром 1-2 мм, подсоединив её к держателям при помощи болтовых или имеющихся готовых цанговых соединений.

Болтовые крепления жала на пластинах

Более точно толщина провода определяется опытным путём – по скорости, с которой температура паяльника достигает рабочего диапазона – чем тоньше проволока жала, тем быстрее оно будет разогреваться. Но с другой стороны, слишком большая температура сделает невозможным процесс пайки и приведёт к быстрому износу и даже перегоранию провода.

Увеличивая поперечное сечение проволоки нужно добиться приемлемого времени (4-8 секунд) разогрева жала и недопущения его перегрева. Нужно помнить, что с увеличением площади поперечного сечения проволоки жала растёт потребляемая мощность и нагревание вторичной обмотки трансформатора.

Поэтому, подобрав нужный диаметр провода жала и опробовав самодельный паяльник в работе, осуществив несколько раз процесс пайки, нужно проверить нагрев вторичной обмотки – она не должна сильно нагреваться, а тем более раскаляться – иначе трансформатор может перегреться, что приведёт к перегоранию первичной обмотки и воспламенению изоляции.

Для удобства работы часто подключают лампочку или светодиод, синхронно включающийся и освещающий место пайки.

Яркий светодиод включается синхронно с паяльником, освещая место пайки

Как самостоятельно изготовить паяльник «Момент» из лампы-экономки

Необходимо найти составные части б/у, от старых домашних электроприборов:

  1. Преобразователь (балласт) от лампы дневного света. Достаточно мощности 40 Вт;
  2. Рабочий трансформатор;
  3. Медная проволока 2-3 мм диаметром;

Корпус, точнее технология изготовления не принципиальна.
Схема устройства:

Фактически все, что мы видим на принципиальной схеме левее трансформатора Tr1 – входит в состав балласта от энергосберегающей лампы. Устройство комплектное, переделывать его или менять компоненты не требуется.

Характеристики преобразователя вполне подходят для импульсного паяльника средней мощности. Безопасность конструкции усиливает штатный предохранитель и контроль перегрева не терморезисторе.
Схема получается компактной, ее можно разместить в любом корпусе.

Рабочий трансформатор изготавливается самостоятельно. Для этого подойдет ферритовое кольцо от сломанного электронного трансформатора. Размер должен быть достаточным для размещения обмоток. Первичку мотаем из провода 0,5 мм. Количество витков 100-120.

Вторичная (силовая) обмотка делается из проволоки сечением 3-3,5 квадрата. Делаем один виток. Непосредственно к ней крепится жало паяльника из медной или нихромовой проволоки 1,5 – 2 мм.

Импульсный паяльник из энергосберегающей лампы готов. Остается придумать для него удобный корпус, установить выключатель, и можно оперативно заниматься ремонтом электроприборов.

Изготовление паяльника, имеющего импульсный принцип действия

В состав конструкции наиболее простого инструмента импульсного принципа действия входят следующие конструктивные элементы:

  • трансформатор электронного принципа действия;
  • светодиодные индикаторы;
  • медная проволока для изготовления жала инструмента;
  • кнопка включения-выключения;
  • пластиковый корпус;
  • диэлектрическая стойка.

Электросхема импульсного паяльника.

Схема устройства импульсного паяльника значительно сложнее, нежели устройство обычного инструмента, имеющего в своей конструкции нагревательный элемент. Для того чтобы изготовить импульсный паяльник своими руками, потребуется подготовить электронный трансформатор.

Для его изготовления можно использовать импульсный блок питания, применяемый для запуска ламп дневного света с мощностью 40 ватт. Трансформатору из такого блока питания требуется некоторая доработка. Суть ее заключается, в том, что требуется удаление вторичной обмотки и установка дополнительной намотки в виде одного-двух витков медного провода с диаметром в 1 мм. Готовый трансформатор с измененной обмоткой помещается в заранее подготовленный корпус. Наиболее удобной формой корпуса будет форма в виде пистолета, на месте курка в которой монтируется кнопка для включения прибора.

На месте воображаемого ствола пистолета монтируется стойка, изготовленная из диэлектрика, на которой закрепляется петля из медной проволоки – жало. Оно подключается к вторичной обмотке трансформатора устройства, при замыкании цепи при помощи кнопки-курка происходит нагрев жала. Для визуализации работы инструмента в цепь можно впаять светодиод. В процессе работы не следует длительное время держать кнопку включения в положении “включено”, так как это может привести к перегреву и быстрому выходу прибора из строя.

Особенности доработки электронного модуля

Выбор по мощности

Перед тем, как сделать блок питания из энергосберегающей лампы, в первую очередь, нужно будет определиться с той мощностью, которая потребуется от него в каждом конкретном случае. От этого параметра будет зависеть степень модернизации электронной части, обеспечивающая возможность нормальной эксплуатации подключаемого к ней оборудования.

Так, при небольшой рабочей мощности будущего блока питания переделка ЭПРА затронет лишь малую часть всей схемы (смотрите рисунок).

Если же предполагается сделать импульсный блок питания из энергосберегающей лампы, рассчитанный на значительные нагрузки (чтобы подключать импульсный паяльник, например), его нагрузочную характеристику необходимо увеличить. Для этого потребуется существенная доработка схемы ЭПРА в расчёте на выходную мощность более 50-ти Ватт.

Для расчета этого параметра следует вспомнить, что он определяется как произведение выходного тока на рабочее напряжение. То есть, если 50-ти ваттный импульсный паяльник рассчитан на напряжение 25 Вольт, то самодельный блок питания должен обеспечивать выходной ток не менее 2-х Ампер (модернизированная схема приводится ниже).

Помимо паяльника, от такого импульсного блока питания может работать любая низковольтная лампа средней мощности.

Какие детали потребуются

На доработанной схеме №1 новые детали выделены красным цветом и обозначают следующие элементы:

  • Диодный мост VD14-VD17;
  • Два конденсатора (простой и электролитический) С9 и С10;
  • Намотанная на балластном дросселе L5 дополнительная обмотка, число витков которой подбирается экспериментально.

Важно! Она выполняет функцию разделительного элемента, исключающего возможность попадания сетевого напряжения 220 Вольт на выход модуля питания.

Разберёмся с тем, что можно сделать, чтобы обезопасить выход БП от перегрузок за счёт правильного выбора числа витков выходной катушки.

Выбор параметров выходной катушки

Для вычисления нужного количество витков в съёмной обмотке L5 необходимо немного поэкспериментировать, то есть поступить следующим образом:

  • Сначала поверх имеющейся катушки нужно намотать порядка 10-ти витков любого провода в изоляции;
  • Затем следует нагрузить намотанную часть на реостат с сопротивлением 5-6 Ом и мощностью порядка 30 Ватт (для его подсоединения может использоваться метод пайки);
  • В результате получают конструкцию, изображённую на рисунке ниже;

  • После этого схему включают в сеть, а затем посредством тестера замеряют напряжение на реостате;
  • Полученное значение в вольтах делится на намотанное ранее число витков, в результате чего получается цифра, соответствующая удельному вольтажу на 1 виток.

В завершении эксперимента определяют требуемое количество витков, необходимых для получения заданного выходного напряжения путём деления его величины на полученный ранее результат.

Конструктивное исполнение обмотки

При доработке выходной катушки всегда нужно помнить о том, что первичная обмотка находится под высоким напряжением. Поэтому все её конструктивные изменения должны осуществляться только на отключенном от сети преобразовательном устройстве.

Обмотка по варианту исполнения №1

При намотке дополнительных витков на уже имеющийся в ЭПРА дроссель не следует забывать про межобмоточную изоляцию, которая обязательна для проводов типа ПЭЛ (в тонкой эмалевой изоляции).

В качестве такой изоляции, наматываемой в несколько слоёв, следует применять специальную ленту из политетрафторэтилена, нередко используемую для уплотнения резьбовых соединений.

Читайте также  Крепление кабеля в штробе

Дополнительная информация. Такая изолирующая лента имеет толщину всего 0,2 мм и чаще всего используется при проведении ремонтных и сантехнических работ.

Готовая обмотка нагружается на диодный мостик, выпрямленное напряжение с которого поступает на нагрузку (это может быть обычная низковольтная лампочка, например). Выходная мощность в выполненном по этой схеме блоке питания обычно ограничивается размерами используемого трансформатора и допустимыми токами коммутируемого устройства на транзисторах TV1 и TV2.

Обмотка по варианту исполнения №2

Для получения блока питания большей мощности, к которому можно будет подключать импульсный паяльник, например, потребуется более сложная доработка (смотрите схему на приведённом ниже рисунке).

В состав дорабатываемой части схемы, выделенной на рисунке красным цветом, входят следующие элементы:

  • Дополнительный трансформатор TV2 с тремя обмотками (для его изготовления удобнее всего воспользоваться ферритовым кольцом с соответствующей магнитной проводимостью);
  • Два полупроводниковых выпрямляющих диода VD14 и VD15;
  • Сглаживающие конденсаторы C9 и C10 достаточной ёмкости.

Помимо этого обязательно нужно будет заменить коммутирующие транзисторы TV1 и TV2 на более мощные образцы с одновременной их установкой на охлаждающие радиаторы.

Обратите внимание! Для лучшего сглаживания пульсаций ёмкости большинства конденсаторов (включая выходные C9 и C10) необходимо будет немного увеличить.

В результате проведённой модернизации частично сгоревшая энергоэффективная лампа превращается в достаточно мощный блок питания (до 100 Ватт). При этом его выходное напряжение может принимать значения от 12-ти Вольт и выше при рабочем токе в нагрузке до 8-9 Ампер. Указанных параметров переделанного из сгоревшей лампы устройства вполне может хватить для питания простейшего шуруповерта, например.

В заключение отметим, что для того, чтобы использовать перегоревшую энергосберегающую лампу для самостоятельного изготовления импульсного блока питания (ибп), нужны определённые навыки обращения с электрическим паяльником. Помимо этого, потребуется умение разбираться с электронными схемами хотя бы на уровне понимания материала, приводимого в данном обзоре.