Обозначения диодов и принцип работы, ВАХ

Обозначение выпрямительного диода на схеме согласно “ГОСТ 2.730-73 ЕСКД. Обозначения условные графические в схемах. Приборы полупроводниковые”. В приложении данного ГОСТа указаны размеры в модульной сетке. Выглядит это следующим образом:

Существуют различные варианты обозначения диодов.

Согласно ОСТ 11366.919-81 следующее буквенно-цифровое обозначение:

  • 1) первая буква или цифра указывает на материал:
    • 1 (Г) — германий Ge
    • 2 (К) — кремний Si
    • 3 (А) — галлий Ga
    • 4 (И) — индий In
  • 2) Вторая буква — это подкласс полупроводникового прибора. Для нашего случая — это буква Д.
  • 3) Третья цифра — функционал элемента в зависимости от класса (диоды, варикапы, стабилитроны и др.).

    Например, для выпрямительных диодов (Д):

    101. 199 — диоды малой мощности с постоянным или средним значением прямого тока менее 0,3А.

    201. 299 — диоды средней мощности с постоянным или средним значением прямого тока от 0,3 до 10А.

    Также существуют диоды большой мощности с током более 10А. Отвод тепла у диодов малой мощности осуществляется через корпус, у диодов средней и большой мощности через теплоотводящие радиаторы.

    До 1982 года была другая классификация:

    • первая Д — характеризовала весь класс диодов
    • далее шел цифровой код:
      • от 1 до 100 — для точечных германиевых диодов
      • от 101 до 200 — для точечных кремниевых диодов
      • от 201 до 300 — для плоскостных кремниевых диодов
      • от 301 до 400 — для плоскостных германиевых диодов
      • от 401 до 500 — для смесительных СВЧ детекторов
      • от 501 до 600 — для умножительных диодов
      • от 601 до 700 — для видеодетекторов
      • от 701 до 749 — для параметрических германиевых диодов
      • от 750 до 800 — для параметрических кремниевых диодов
      • от 801 до 900 — для стабилитронов
      • от 901 до 950 — для варикапов
      • от 951 до 1000 — для туннельных диодов
      • от 1001 до 1100 — для выпрямительных столбов
    • третья цифра — разновидность групп однотипных приборов

    Система JEDEC (США)

    • первая цифра — число p-n переходов (1 — диод; 2 — транзистор; 3 — тиристор)
    • далее N (типа номер) и серийный номер
    • после может идти пару цифр про номиналы и отдельные характеристики диода

    Система Pro Electron (Европа)

    По данной системе приборы делятся на промышленные и бытовые. Бытовые кодируются двумя буквами и тремя цифрами от 100 до 999. У промышленных приборов будет идти три буквы и две цифры от 10 до 99. Для диодов:

    • 1) первая буква:
      • A — германий Ge
      • B — кремний Si
      • C — галлий Ga
      • R — другие полупроводники
    • 2) Вторая буква — это буква A, указывающая на маломощные импульсные и универсальные диоды.
    • 3) Третья буква отвечает за принадлежность элемента к сфере специального применения (промышленность, военная). “Z”, “Y”, “X” или “W”.
    • 4) Четвертая — это 2х, 3х или 4х-значный серийный номер прибора.
    • 5) Дополнительный код — в нем для выпрямительных диодов указывается максимальная амплитуда обратного напряжения.

    Система JIS (Япония)

    Применяется в странах Азии и тихоокеанского региона.

    • первая цифра — число переходов (0 — фототранзистор, фотодиод; 1 — диод; 2 — транзистор; 3 — тиристор)
    • затем буква S (semiconductors) — полупроводниковые
    • затем буква, отвечающая за тип прибора:
      • A — ВЧ транзисторы p-n-p
      • B — НЧ транзисторы p-n-p
      • С — ВЧ транзисторы n-p-n
      • D — НЧ транзисторы n-p-n
      • E — диоды
      • F — тиристоры
      • G — диоды Ганна
      • H — однопереходные транзисторы
      • J — полевые транзисторы с p-каналом
      • K — полевые транзисторы с n-каналом
      • M — симметричные тиристоры
      • Q — светоизлучающие диоды
      • R — выпрямительные диоды
      • S — малосигнальные диоды
      • T — лавинные диоды
      • V — варикапы, p-i-n диоды, диоды с накоплением заряда
      • Z — стабилитроны, стабисторы, ограничители

      В нашем случае будет буква R.

    • Рег. номер прибора
    • Модификация прибора
    • Далее может идти индекс, описывающий специальные свойства

    Существуют и специальные обозначения от фирм-изготовителей, которые отличаются от приведенных выше.

    Разновидности устройств, их обозначение

    По конструкции различают приборы двух видов: точечные и плоскостные. В промышленности наиболее распространены кремниевые (обозначение — Si) и германиевые (обозначение — Ge). У первых рабочая температура выше. Преимущество вторых — малое падение напряжения при прямом токе.

    Принцип обозначений диодов – это буквенно-цифровой код:

    • Первый элемент – обозначение материала из которого он выполнен,
    • Второй определяет подкласс,
    • Третий обозначает рабочие возможности,
    • Четвертый является порядковым номером разработки,
    • Пятый – обозначение разбраковки по параметрам.

    Селеновый вентиль

    Этот вентиль (рис. 13-21) состоит из алюминиевого или стального диска 1, покрытого с одной стороны полупроводящим слоем кристаллического селена 2, обладающего дыроч ной проводимостью, который служит одним электродом. Другим электродом 4 служит нанесенный на селен слой сплава олово, кадмий и висмут, к которому прилегает латунная пружинящая шайба 5. Электроды отделены друг от друга запирающим слоем.

    Допустимое напряжение на селеновый вентиль составляет 20—40 в, при обратном напряжении 60—80 в вентиль пробивается.

    Рис. 13-21. Схема устройства селенового вентиля.

    На рис. 13-22 показан столбик селенового вентиля, а на рис. 13-23 — его вольт-амперная харак теристика.

    Типы выпрямителей переменного тока

    Ещё в начале ХХ века имел место очень принципиальный спор между корифеями электротехники. Какой ток выгоднее передавать потребителю на большие расстояния: постоянный или переменный? Научный спор выиграли сторонники передачи переменного тока по проводам высоковольтных линий от подстанции к потребителю. Эта система принята во всём мире и успешно эксплуатируется до сих пор.

    Но большинство электронной техники и не только бытовой, но и промышленной питается постоянными напряжениями и это привело к созданию целой отрасли электрики – преобразование (выпрямление) переменного тока. После того как электронная лампа была забыта, главным элементом любого выпрямителя стал полупроводниковый диод.

    Схемотехника выпрямителей весьма обширна, но самым простым является однополупериодный выпрямитель.

    Однополупериодный выпрямитель.

    Напряжение с вторичной обмотки силового трансформатора подаётся на один единственный диод. Вот схема.

    Поэтому выпрямитель и назван однополупериодным. Выпрямляется только один полупериод и на выходе получается импульсное напряжение. Форма его показана на рисунке.

    Схема проста и не требует большого количества элементов. Это и сказывается на качестве выпрямленного напряжения. При низких частотах переменного напряжения (например, как в электросети — 50 Гц) выпрямленное напряжение получается сильно пульсирующим. А это очень плохо.

    Для того чтобы снизить величину пульсации выпрямленного напряжения приходится брать величину конденсатора С1 очень большую, порядка 2000 – 5000 микрофарад, что увеличивает размер блока питания, так как электролиты на 2000 — 5000 мкф имеют довольно большие размеры. Поэтому на низких частотах эта схема практически не используется. Зато однополупериодные выпрямители прекрасно зарекомендовали себя в импульсных блоках питания работающих на частотах 10 – 15 кГц (килогерц). На таких частотах величина ёмкости фильтра может быть очень небольшой, а простота схемы уже не столь сильно влияет на качество выпрямленного напряжения.

    Примером использования однополупериодного выпрямителя может служить простой зарядник от сотового телефона. Так как зарядник сам по себе маломощный, то в нём применяется однополупериодная схема, причём как во входном сетевом выпрямителе 220V (50Гц), так и в выходном, где требуется выпрямить переменное напряжение высокой частоты со вторичной обмотки импульсного трансформатора.

    К несомненным достоинствам такого выпрямителя следует отнести минимум деталей, низкую стоимость и простые схемные решения. В обычных (не импульсных) блоках питания многие десятилетия успешно работают двухполупериодные выпрямители.

    Двухполупериодные выпрямители.

    Они бывают двух схемных решений: выпрямитель со средней точкой и мостовая схема, известная, как схема Гретца. Выпрямитель со средней точкой требует более сложного в исполнении силового трансформатора, хотя диодов там используется в два раза меньше чем в мостовой схеме. К недостаткам двухполупериодного выпрямителя со средней точкой можно отнести то, что для получения одинакового напряжения, число витков во вторичной обмотке трансформатора должно быть в два раза больше, чем при использовании мостовой схемы. А это уже не совсем экономично с точки зрения расходования медного провода.

    Далее на рисунке показана типовая схема двухполупериодного выпрямителя со средней точкой.

    Величина пульсаций выпрямленного напряжения меньше чем у однополупериодного выпрямителя и величину конденсатора фильтра так же можно использовать гораздо меньшую. Наглядно увидеть, как работает двухполупериодная схема можно по рисунку.

    Как видим, на выходе выпрямителя уже в два раза меньше «провалов» напряжения — тех самых пульсаций.

    Активно применяется схема выпрямителя со средней точкой в выходных выпрямителях импульсных блоков питания для ПК. Так как во вторичной обмотке высокочастотного трансформатора требуется меньшее число витков медного провода, то гораздо эффективнее применять именно эту схему. Диоды же применяются сдвоенные, т.е. такие, у которых общий корпус и три вывода (два диода внутри). Один из выводов — общий (как правило катод). По виду сдвоенный диод очень похож на транзистор.

    Наибольшую популярность приобрела в бытовой и промышленной аппаратуре мостовая схема. Взгляните.

    Можно без преувеличения сказать, что это самая распространённая схема. На практике вы с ней ещё не раз встретитесь. Она содержит четыре полупроводниковых диода, а на выходе, как правило, ставится RC-фильтр или только электролитический конденсатор для сглаживания пульсаций напряжения.

    О данной схеме уже рассказывалось на странице про диодный мост. Стоит отметить, что и у мостовой схемы есть недостатки. Как известно, у любого полупроводникового диода есть так называемое прямое падение напряжения (Forward voltage dropVF). Для обычных выпрямительных диодов оно может быть 1 — 1,2 V (зависит от типа диода). Так вот, при использовании мостовой схемы на диодах теряется напряжение, равное 2 x VF, т.е. около 2 вольт. Это происходит потому, что в выпрямлении одной полуволны переменного тока участвуют 2 диода (затем другие 2). Получается, что на диодном мосте теряется часть напряжения, которое мы снимаем со вторичной обмотки трансформатора, а это явные потери. Поэтому в некоторых случаях в составе диодного моста применяются диоды Шоттки, у которых прямое падение напряжения невелико (около 0,5 вольта). Правда, стоит учесть, что диод Шоттки не рассчитан на большое обратное напряжение и очень чувствителен к его превышению.

    Большой интерес вызывает выпрямитель с удвоением напряжения.

    Выпрямитель с удвоением напряжения.

    Принцип удвоителя напряжения Латура-Делона-Гренашера основан на поочерёдном заряде-разряде конденсаторов С1 и С2 разными по полярности полуволнами входного напряжения. В результате между катодом одного диода и анодом второго диода возникает напряжение в два раза превышающее входное. Схема в студию:)

    Стоит отметить, что данная схема применяется в блоках питания нечасто. Но её можно смело использовать, если необходимо вдвое увеличить напряжение, которое снимается со вторичной обмотки трансформатора. Это будет более логичным и правильным решением, чем перематывать вторичную обмотку трансформатора с целью увеличить выходное напряжение вторичной обмотки в 2 раза (ведь при этом придётся наматывать вторичную обмотку с вдвое большим числом витков). Так что, если не удалось найти подходящий трансформатор — смело применяем данную схему.

    Развитием схемы стало создание умножителя на полупроводниковых диодах.

    Умножитель напряжения.

    Каждый диод и конденсатор образуют «звено» и эти звенья можно соединять последовательно до получения напряжения в несколько десятков киловольт. Конечно, для этого входное напряжение тоже должно быть достаточно большим.

    На рисунке изображён четырёхзвенный умножитель и на выходе мы получаем напряжение в четыре раза превышающее входное (U). Эти выпрямители получили большое распространение там, где нужно получить высокое напряжение при достаточно малом токе. Например, по такой схеме были выполнены источники высокого напряжения в старых телевизорах и осциллографах для питания анода электронно-лучевой трубки.

    Сейчас такие источники питания используются в научных лабораториях, в детекторах элементарных частиц, в медицинской аппаратуре (люстра Чижевского) и в оружии самообороны (электрошокер). При повторении подобных конструкций и подборе деталей, следует учитывать рабочее напряжение, как диодов, так и конденсаторов исходя из напряжения, которое вы хотите получить. Весь умножитель, как правило, заливается специальным компаундом или эпоксидной смолой во избежание высоковольтных пробоев между элементами схемы.

    Для нормальной работы некоторых устройств как, например, люстры Чижевского необходимы достаточно высокие напряжения. Как считают специалисты, излучатель отрицательных аэроионов, эффективен только при напряжении не менее 60 киловольт.

    Трёхфазные выпрямители.

    Устройства, которые используются для получения постоянного тока из переменного трёхфазного тока, называются трёхфазными выпрямителями. Трёхфазные выпрямители в бытовой технике, конечно, не используются. Единственный прибор, который может использоваться в быту это сварочный аппарат. В качестве трёхфазных выпрямителей используются наработки двух известных электротехников Миткевича и Ларионова. Самая простая схема Миткевича называется «три четверти моста параллельно», что означает три силовых диода включенных параллельно через вторичные обмотки трёхфазного трансформатора. Схема.

    Коэффициент пульсаций на нагрузке очень мал, что позволяет использовать конденсаторы фильтра небольшой ёмкости и малых габаритов.

    Более сложной является схема Ларионова, которая называется «три полумоста параллельно», что это такое хорошо видно из рисунка.

    В схеме используется уже шесть диодов и немного другая схема включения. Вообще схем трёхфазных выпрямителей достаточно много и наиболее совершенной, хотя редко употребляемой является схема «шесть мостов параллельно», а это уже 24 диода! Зато эта схема может выдавать высокое напряжение при большой мощности.

    Трёхфазные мощные выпрямители используются в электровозах, городском электротранспорте (трамвай, троллейбус, метро), в промышленных установках для электролиза. Так же промышленные системы очистки газовых смесей, буровое и сварочное оборудование используют трёхфазные выпрямители.

    Теперь вы знаете, какие бывают выпрямители переменного тока и сможете легко обнаружить их на принципиальной схеме или печатной плате любого прибора. А для тех, кто хочет знать больше, рекомендуем ознакомиться с книгой «Полупроводниковые выпрямители».

    Практическое использование выпрямительного диода

    В связи с неудержимым развитием научно-технического прогресса применение выпрямителей затронуло все сферы жизнедеятельности человека. Диоды силовые выпрямительные эксплуатируются в таких узлах и механизмах:

    • в блоках питания главных двигателей транспортных средств (наземных, воздушных и водных), промышленных станков и техники, буровых установок;
    • в комплектации диодного моста для сварочных аппаратов;
    • в выпрямительных установках для гальванических ванн, используемых для получения цветных металлов или нанесения защитного покрытия на деталь или изделие;
    • в выпрямительных установках для очистки воды и воздуха, фильтрах различного рода;
    • для передачи электроэнергии на дальние расстояния посредством высоковольтной линии электропередач.

    В повседневной жизни выпрямители используют в различных транзисторных схемах. Применяют в основном маломощные устройства как в виде однополупериодного выпрямителя, так и виде диодного моста. Например, диоды выпрямительного блока генератора хорошо известны автолюбителям.


    Однофазный однополупериодный выпрямитель

    Он является простейшим и имеет схему, изображенную на рис. 2.73, а. В таком выпрямителе ток через нагрузку протекает лишь в течение полупериода сетевого напряжения (рис. 2.73, б).


    Исходя из приведенных выше определений, получим основные параметры:

    Такой выпрямитель находит ограниченное применение в маломощных устройствах. Кроме прочего, характерной отрицательной чертой однополупериодного выпрямителя является протекание постоянной составляющей тока во входной цепи. Если выпрямитель питается через трансформатор, как показано на рис. 2.73, в, то наличие указанной постоянной составляющей тока вызывает подмагничивание сердечника трансформатора, что приводит к необходимости увеличивать его габаритные размеры.

    Кратко об управляемых преобразователях

    Нередко требуется управлять напряжением на выходе преобразователя, не изменяя входное. Для этой цели наиболее оптимальным будет применение управляемых вентилей, пример такой реализации показан ниже.

    Простой тиристорный преобразователь (на управляемых вентилях)

    Двухполупериодный выпрямитель

    Так выглядит схема двухполупериодного выпрямителя:

    Тут требуется некоторое пояснение по поводу двух источников напряжения. С помощью трансформатора, один источник можно преобразовать в два. Для чего это делается ─ уже отдельный вопрос. Здесь же показано, как можно выпрямить напряжение в таком случае. Давайте опять уберем конденсатор и подключим щуп осциллографа на выходе диодов, а также соединим в нагрузку величиной 100 Ом:

    Двухполупериодный выпрямитель

    Схема выпрямления с выводом от средней точки трансформатора


    Пунктиром показано напряжение на входе второго диода. Как видно из графиков, во время первого полупериода первый диод открыт и на нагрузке создается падение напряжения. Во время второго полупериода первый диод закрывается, поскольку оказывается включенным в обратном направлении, а второй, наоборот, открывается и на нагрузке снова выделяется положительная полуволна. На схеме плюсиками и минусами обозначено действие полуволн переменного тока. Частота пульсаций двуполупериодного выпрямителя вдвое больше, что является его достоинством. Для такой схемы характерны следующие параметры:

    Достоинства: удвоенные значения U ср и I ср , вдвое меньший коэффициент пульсаций по сравнению с однополупериодной схемой. Недостатки: наличие трансформатора с двумя симметричными обмотками (что увеличивает его массогабаритные показатели). К тому же на диодах удвоенное обратное напряжение.

    Мостовая схема выпрямителя


    Параметры такие же, как и двухполупериодной схемы со средним выводом, кроме обратного напряжения (оно в два раза меньше). Положительная полуволна (с верхнего по схеме вывода трансформатора) проходит через диод VD2, затем через нагрузку, затем через VD3 ко второму выводу трансформатора. При смене направления тока работают диоды VD4, VD1. Недостатком схемы считается удвоенное число диодов.
    Положительный момент в схеме- не нужен трансформатор со средней точкой.

    Трехфазный выпрямитель

    Трехфазные выпрямители так-же делятся на однополупериодные и двухполупериодные: вот схемы:

    Однополупериодный трехфазный выпрямитель


    ниже показаны диаграммы трехфазного однополупериодного выпрямителя


    Каждая фаза смещена относительно другой на угол 120°. На нагрузке работает та фаза, у которой больше значение положительной полуволны в данный момент времени. В схеме диоды используются в течении 1/3 периода. При этом необходимо наличие средней точки. Среднее значение выпрямленного напряжения Uср = 1.17Uвх , обратное напряжение Uобр.max = 2.1Uср , коэффициент пульсаций 0.25 .

    Двухполупериодный трехфазный выпрямитель

    По принципу действия такая схема аналогична однофазной двухполупериодной (мостовой). Для нее характерно: Uср = 2.34Uвх, Uобр.max = 1.05Uср, p = 0.057 . Находит применение при различных величинах входного напряжения и токах нагрузки в сотни Ампер. Схема экономична, имеет низкие пульсации. Однако в реальных схемах коэффициент пульсаций составляет 8-10% из-за несимметричности фазных питающих напряжений.