Шестиугольник в изометрии

Шестиугольник в изометрии

Аксонометрические проекции применяются в качестве вспомогательных к чертежам в тех случаях, когда требуется поясняющее наглядное изображение формы детали. В ГОСТ 2.317-69 стандартизованы прямоугольные и косоугольные аксонометрические проекции с различным расположением осей.

ПРЯМОУГОЛЬНЫЕ ПРОЕКЦИИ

Изометрическая проекция

Положение аксонометрических осей приведено на рис. 1. Коэффициент искажения по осям x , y , z равен 0,82. Для упрощения изометрическую проекцию, как правило, выполняют без искажения, т.е. приняв коэффициент искажения равным 1.

Линии штриховки сечений в аксонометрических проекциях наносят параллельно одной из диагоналей проекций квадратов, лежащих в соответствующих координатных плоскостях, стороны которых параллельны аксонометрическим осям. Для изометрической проекции вариант штриховки по плоскостям приведен на рис. 2.

Окружности, лежащие в плоскостях, параллельных плоскостям проекций, проецируются на аксонометрическую плоскость проекций в эллипсы (рис. 3).

1, 2, 3 – эллипсы, их большые оси расположены под углом 90 ° к осям y , z , x соответственно и равны (при коэффициенте искажения – 1) 1,22 d , а малые оси – 0,71 d , где d – диаметр окружности.

Построение эллипсов в изометрической проекции окружности можно заменить построением овалов, Следует отметить, что очертание любого циркульного овала не совпадает с очертанием эллипса, имеющего такие же оси, хотя и приближается к нему. Один из способов построения овала приведен на рис. 4.

Пример изображения детали в прямоугольной изометрии приведен на рис. 5.

Диметрическая проекция

Положение аксонометрических осей приведено на рис. 6. Коэффициент искажения по оси y равен 0,47, а по осям x и z – 0,94. Диметрическую проекцию выполняют, как правило, упрощенно с коэффициентом искажения, равным 1, по осям x и z и с коэффициентом искажения 0,5 по оси y .

Штриховка сечений в прямоугольной диметрической проекции показана на рис.7, а пример изображения детали – на рис. 9.

Окружности, лежащие в плоскостях, параллельных плоскостям проекций, проецируются на аксонометрическую плоскость проекций в эллипсы (рис. 8).

1 – эллипс, его большая ось расположена под углом 90 ° к оси y и равна (при коэффициенте искажения – 1) 1,06 d , а малая ось – 0,95 d , где d – диаметр окружности;

2, 3 – эллипсы, их большие оси расположены под углом 90 ° к осям z и x соответственно и равны 1,06 d , а малая ось – 0,35 d (при коэффициенте искажения – 1).

КОСОУГОЛЬНЫЕ ПРОЕКЦИИ

Фронтальная изометрическая проекция

Положение аксонометрических осей приведено на рис. 10. Допускается применять проекции с углом наклона оси y 30 и 60 градусов. Фронтальную изометрическую проекцию выполняют без искажения по осям x , y , z .

Штриховка сечений в косоугольной фронтальной изометрической проекции показана на рис. 11, а пример выполнения изображения детали – на рис.13.

Окружности, лежащие в плоскостях, параллельных фронтальной плоскости проекций, проецируются на аксонометрическую плоскость в окружности, а окружности, лежащие в плоскостях, параллельных горизонтальной и профильной плоскостям проекций, – в эллипсы (рис. 12).

1 – окружность d ; 2, 3 – эллипсы, большая ось расположена под углом 22 ° 30 ¢ к осям x и z соответственно и равна 1,3 d , а малая ось – 0,54 d .

Горизонтальная изометрическая проекция

Положение аксонометрических осей приведено на рис.14. Допускается применять горизонтальные изометрические проекции с углом наклона оси y 45 и 60 градусов, сохраняя угол между осями x и y равным 90 градусов. Горизонтальную изометрическую проекцию выполняют без искажения по осям x , y и z .

Штриховка сечений в косоугольной горизонтальной изометрической проекции показана на рис.15, а пример изображения детали – на рис. 17.

Окружности, лежащие в плоскостях, параллельных горизонтальной плоскости проекций, проецируются на аксонометрическую плоскость проекций в окружности, а окружности, лежащие в плоскостях, параллельных фронтальной и профильной плоскостям проекций, – в эллипсы (рис.16).

1 – эллипс, большая ось расположена под углом 15 ° к оси z и равна 1,37 d , а малая ось – 0,37 d ;

2 – окружность d ;

3 – эллипс, большая ось расположена под углом 30 ° к оси z и равна 1,22 d , а малая ось – 0,71 d ;

Фронтальная диметрическая проекция

Положение аксонометрических осей приведено на рис. 18. Допускается применять фронтальные диметрические проекции с углом наклона оси y 30 и 60 градусов. Коэффициент искажения по оси y равен 0,5, а по осям x , z – 1.

Штриховка сечений в косоугольной фронтальной диметрии показана на рис.19, а пример изображения детали – на рис.21

Окружности, лежащие в плоскостях, параллельных фронтальной плоскости проекций, проецируются на аксонометрическую плоскость проекций в окружности, а окружности, лежащие в плоскостях, параллельных горизонтальной или профильной плоскости проекций, – в эллипсы (рис.20). 1 – окружность d ; 2, 3 – эллипсы, большая ось расположена под углом 7 ° 14 ¢ к осям x и z соответственно и равна 1,07 d , а малая ось – 0,33 d .

По теме: методические разработки, презентации и конспекты

В связи с переходом на новые федеральные государственные образовательные стандарты перед школой и перед учителем стоит задача: не только дать знания по конкретным дисциплинам, но и научить учащихся пр.

Цель: Обобщение знаний учащихся по нахождению площади плоских геометрических фигур на основе составления геометрических орнаментов. Задачи: — Обобщить знания учащихся по нахождению площади плоских г.

Урок математики в 5 классе «ГЕОМЕТРИЧЕСКИЕ ФИГУРЫ» Цели урока: закрепление основных геометрических понятий, совершенствование навыков построения и измерения углов, построения треуго.

Материал для использования на уроках по математике в начальной школе.

Данный урок включает в себя все различные этапы урока, индивидуальную, групповую работу, изложение и закрепление пройденного материала.

Линейно-конструктивный рисунок шестигранной призмы

ЦЕЛЬ ЗАДАНИЯ. Научиться изображать шести­гранную призму в различных положениях.

ПОСТАНОВКА ЗАДАНИЯ. Изучите различные способы построения правильного шестиугольника, сделайте рисунки шестиугольников, проверьте правильность их построения. На основе шестиугольни­ков постройте шестигранные призмы.

РЕКОМЕНДАЦИИ ПО ВЫПОЛНЕНИЮ ЗАДАНИЯ.

Рассмотрите шестигранную призму на рис. 3.52 и ее ортогональные проекции на рис. 3.53. В основа­нии шестигранной призмы (шестигранника) лежат правильные шестиугольники, боковые грани — оди­наковые прямоугольники. Для того, чтобы правиль­но изобразить шестигранник в перспективе, необ­ходимо сначала научиться грамотно изображать в перспективе его основание (рис. 3.54). В шестиугольнике на рис. 3.55 вершины обозначены цифра­ми от одного до шести.

Если соединить точки 1 и 3, 4 и 6 вертикальными прямыми, можно заметить, что эти прямые вместе с точкой центра окружности де­лят диаметр 5— 2 на четыре равных отрезка (эти от­резки обозначены дугами). Противоположные сто­роны шестиугольника параллельны друг другу и прямой, проходящей через его центр и соединяю­щей две вершины (например, стороны 6— 1 и 4— 3 параллельны прямой 5— 2). Эти наблюдения помо­гут вам построить шестиугольник в перспективе, а также проверить правильность этого построения.
Построить правильный шестиугольник по представ­лению можно двумя способами: на основе описан­ной окружности и на основе квадрата.
На основе описанной окружности. Рассмотрите рис. 3.56. Все вершины правильного шестиугольни­ка принадлежат описанной окружности, радиус ко­торой равен стороне шестиугольника.

Горизонтальный шестиугольник

Изобразите го­ризонтальный эллипс произвольного раскрытия, т.е. описанную окружность в перспективе. Теперь необ­ходимо найти на ней шесть точек, являющихся вер­шинами шестиугольника. Проведите любой диа­метр данной окружности через ее центр (рис. 3.57).
Крайние точки диаметра — 5 и 2, лежащие на эллип­се, являются вершинами шестиугольника. Для на­хождения остальных вершин необходимо разделить этот диаметр на четыре одинаковых отрезка. Диа­метр уже разделен точкой центра окружности на два радиуса, остается разделить каждый радиус попо­лам. На перспективном рисунке все четыре отрезка равномерно сокращаются при удалении от зрителя (рис. 3.58). Теперь проведите через середины ради­усов — точки А и В — прямые, перпендикулярные пря­мой 5— 2. Найти их направление можно при помощи касательных к эллипсу в точках 5 и 2 (рис. 3.59). Эти касательные будут перпендикулярны диаметру 5— 2, а прямые, проведенные через точки А и В парал­лельно этим касательным, будут также перпендику­лярны прямой 5— 2. Обозначьте точки, полученные на пересечении этих прямых с эллипсом, как 1, 3, 4, 6 (рис. 3.60). Соедините все шесть вершин прямы­ми линиями (рис. 3.61).

Читайте также  Радиальный подшипник

Проверьте правильность вашего построения разными способами. Если построение верно, то ли­нии, соединяющие противоположные вершины шестиугольника, пересекаются в центре окружности (рис. 3.62), а противоположные стороны шести­угольника параллельны соответствующим диамет­рам (рис. 3.63). Еще один способ проверки показан на рис. 3.64.

Вертикальный шестиугольник

В таком шести­угольнике прямые, соединяющие точки 1 и 3, 6 и 4, а также касательные к описанной окружности в точ­ках 5 и 2, имеют вертикальное направление и сохра­няют его на перспективном рисунке. Таким обра­зом, проведя две вертикальные касательные к эл­липсу, найдем точки 5 и 2 (точки касания). Соедини­те их прямой линией, а затем разделите полученный диаметр 5— 2 на 4 равных отрезка, учитывая их пер­спективные сокращения (рис. 3.65). Проведите вер­тикальные прямые через точки А и В, а на их пере­сечении с эллипсом найдите точки 7, 3, 6 и 4. Затем последовательно соедините точки 1— 6 прямыми (рис. 3.66). Правильность построения шестиуголь­ника проверьте аналогично предыдущему примеру.

Описанный способ построения шестиугольника позволяет получить эту фигуру на основе окружно­сти, изобразить которую в перспективе проще, чем
квадрат заданных пропорций. Поэтому данный спо­соб построения шестиугольника представляется наиболее точным и универсальным. Способ постро
ения на основе квадрата позволяет легко изобра­зить шестигранник в том случае, когда на рисунке уже есть куб, иными словами, когда пропорции квадрата и направление его сторон определены.
На основе квадрата. Рассмотрите рис. 3.67. Вписанный в квадрат шестиугольник по горизон­тальному направлению 5— 2 равен стороне квадра­та, а по вертикали — меньше ее длины.

Вертикальный шестиугольник

Нарисуйте вер­тикальный квадрат в перспективе. Проведите через пересечение диагоналей прямую, параллельную его горизонтальным сторонам. Разделите полученный отрезок 5— 2 на четыре равные части и проведите через точки А и В вертикальные прямые (рис. 3.68).
Линии, ограничивающие шестиугольник сверху и снизу, не совпадают со сторонами квадрата. Изоб­разите их на некотором расстоянии (1/14 а) от гори­зонтальных сторон квадрата и параллельно им. Со­единив найденные таким образом точки 1 и 3 с точ­кой 2, а точки 6 и 4 — с точкой 5, получим шести­угольник (рис. 3.69).

Гэризонтальный шестиугольник строится в той же последовательности (рис. 3.70 и 3.71).

Этот способ построения уместен только для ше­стиугольников с достаточным раскрытием. В слу­чае, если раскрытие шестиугольника незначитель­но, лучше воспользоваться способом на основе описанной окружности. Для проверки шестиуголь­ника, построенного через квадрат, можно использо­вать уже известные вам методы.

Кроме того существует еще один — описать вок­руг полученного шестиугольника окружность (на ва­шем рисунке — эллипс). Все вершины шестиуголь­ника должны принадлежать этому эллипсу.

Овладев навыками изображения шестиугольни­ка, вы свободно перейдете к изображению шести­гранной призмы. Внимательно рассмотрите схему
на рис. 3.72, а также схемы построения шестигран­ных призм на основе описанной окружности (рис. 3.73; 3.74 и 3.75) и на основе квадрата (рис. 3.76; 3.77 и 3.78).

Изобразите вертикальные и горизон­тальные шестигранники различными способами. На рисунке вертикального шестигранника длинные стороны боковых граней будут параллельными друг другу вертикальными прямыми, а шестиугольник
основания будет тем больше раскрыт, чем дальше он находится от линии горизонта. На рисунке гори­зонтального шестигранника длинные стороны боко­вых граней будут сходиться в точке схода на гори­зонте, а раскрытие шестиугольника основания бу­дет тем больше, чем дальше от зрителя он находит­ся. Изображая шестигранник, следите также за тем, чтобы параллельные грани обоих оснований сходи­лись в перспективе (рис. 3.79; 3.80).

Зачем уметь строить эту геометрическую фигуру?

Научиться изображать геометрические тела, в том числе и призмы, необходимо всем будущим художникам.

С построения этих объектов начинается учебный процесс во всех заведениях. А уже после этого студенты постепенно переходят к изображению розеток, капителей, портрета и фигуры человека.

Если вы освоите этот объект, то в дальнейшем вам будет проще изображать различные предметы, строящиеся на его основе. В частности, у вас не возникнет трудностей с различными коробками и упаковками, бытовой техникой, зданиями и так далее.

Рисование геометрических тел также входит и в экзаменационную программу для поступления в художественный вуз. Однако с первого раза построить правильную фигуру с соблюдением пропорции и перспективы получается далеко не у каждого. Поэтому будет лучше, если в процессе подготовки к экзаменам вы потратите на изображение призмы достаточно времени, тогда на самом вступительном испытании будете чувствовать себя уверенно. С каждым разом изображение призмы будет даваться все легче.

В школе-студии К.Э. Арутюновой «Мастер рисунка» учат работать с геометрическими телами. К каждому ученику применяется индивидуальный подход с учетом его уровня и времени до сдачи вступительного экзамена. Преподаватель подробно разбирает со студентами все работы, обращает внимание на ошибки и помогает их исправить.

Готовитесь ли вы к поступлению в художественный вуз или просто хотите научиться для себя, без основ вам не обойтись. Независимо от того, в каком стиле вы собираетесь работать позднее, начать изучение все равно необходимо с базовых знаний. Запишитесь на занятия по телефону в Москве или через специальную форму на сайте.

Углы поворота

С точки зрения двух углов, необходимых для изометрической проекции, значение второго может показаться нелогичным и заслуживает дальнейшего объяснения. Давайте сначала представим куб со сторонами длиной 1, а его центр расположен в начале оси. Мы можем вычислить длину линии от центра до середины любого ребра как √ 2, используя теорему Пифагора . При повороте куба на 45 ° по оси x точка (1, 1, 1) станет (1, 0, √ 2 ), как показано на диаграмме. Вторые цели вращения , чтобы принести ту же точку на положительном г оси х , и поэтому необходимо выполнить поворот значения , равный арктангенс от 1 / √ 2 , которое приблизительно 35,264 °.

4.2 Косоугольные проекции

4.2.1 Фронтальная диметрическая проекция

Положение аксонометрических осей приведено на Рисунке 4.7. Допускается применять фронтальные диметрические проекции с углом наклона к оси OY, равным 30 0 и 60 0 .

Коэффициент искажения по оси OY равен m=0,5 а по осям OX и OZ — k=n=1.

Рисунок 4.7 – Аксонометрические оси в косоугольной фронтальной диметрической проекции

Окружности, лежащие в плоскостях, параллельных фронтальной плоскости проекций, проецируются на плоскость XOZ без искажения. Большие оси эллипсов 2 и 3 равны 1,07D, а малая ось – 0,33D (D — диаметр окружности). Большая ось эллипса 2 составляет с осью ОХ угол 7º 14´, а большая ось эллипса 3 составляет такой же угол с осью OZ.

Пример аксонометрической проекции условной детали с вырезом приводится на Рисунке 4.8.

Как видно из рисунка, данная деталь располагается таким образом, чтобы её окружности проецировались на плоскость XОZ без искажения.

Рисунок 4.8 – Изображение детали в косоугольной фронтальной диметрической проекции

Диметрия представляет собой один из видов аксонометрической проекции. Благодаря аксонометрии при одном объемном изображении можно рассматривать объект сразу в трех измерениях. Поскольку коэффициенты искажений всех размеров по 2-м осям одинаковы, данная проекция и получила название диметрия.

Читайте также  Уклон канализации 110

Прямоугольная диметрия

При расположении оси Z’ вертикально, при этом оси Х’ и Y’ образуют с горизонтального отрезка углы 7 градуса 10 минут и 41 градус 25 минут. В прямоугольной диметрии коэффициент искажения по оси Y будет составлять 0,47, а по осям Х и Z в два раза больше, то есть 0,94.

Чтобы осущесвить построение приближенно аксонометрические оси обычной диметрии, необходимо принять, что tg 7 градусов 10 минут равен 1/8, а tg 41 градуса 25 минут равен 7/8.

Как построить диметрию

Для начала необходимо начертить оси, чтобы изобразить предмета в диметрии. В любой прямоугольной диметрии углы, находящиеся между осями Х и Z, равны 97 градусов 10 минут, а между осями Y и Z – 131 градусов 25 минут и между Y и Х – 127 градусов 50 минут.

Теперь требуется нанести оси на ортогональные проекции изображаемого предмета, учитывая выбранное положение предмета для вычерчивания в диметрической проекции. После того, как завершите перенос на объемное ихображение габаритных размеров предмета, можете приступать к чертежу незначительных элементов на поверхности предмета.

Стоит запомнить, что окружности в каждой плоскости диметрии изображаются соответствующими эллипсами. В диметрической проекции без искажения по осям Х и Z большая ось нашего эллипса во всех 3-х плоскостях проекции будет составлять 1,06 диаметра нарисованной окружности. А малая ось эллипса в плоскости ХОZ составляет 0,95 диаметра, а в плоскости ZОY и ХОY – 0,35 диаметра. В диметрической проекции с искажением по осям Х и Z большая ось эллипса равняется диаметру окружности во всех плоскостях. В плоскости ХОZ малая ось эллипса составляет 0,9 диаметра, а плоскостях ZОY и ХОY равны 0,33 диаметра.

Чтобы получить более детально изображение, необходимо выполнить вырез через детали на диметрии. Заштриховку при вычеркивании выреза следует наносить параллельно проведенной диагонали проекции выбранного квадрата на необходимую плоскость.

Что такое изометрия

Изометрия является одним из видов аксонометрической проекции, где расстояния единичных отрезков на всех 3-х осях одинаковые. Изометрическая проекция активно используется в машиностроительных чертежах, чтобы отобразить внешний вид предметов, а также в разнообразных компьютерных играх.

В математике изометрия известна как преобразование метрического пространства, которое сохраняет расстояние.

Прямоугольная изометрия

В прямоугольной (ортогональной) изометрии аксонометрические оси создают между собой углы, которые равны 120 градусам. Ось Z находится в вертикальном положении.

Как начертить изометрию

Построение изометрии предмета дает возможность получить наиболее выразительное представление о пространственных свойствах изображаемого объекта.

Перед тем, как начать построение чертежа в изометрической проекции, необходимо выбрать такое расположение изображаемого предмета, чтобы были максимально видны его пространственные свойства.

Теперь вам требуется определиться с видом изометрии, которую будете чертить. Существует два ее вида: прямоугольная и горизонтальная косоугольная.

Нарисуйте оси легкими тонкими линиями, чтобы изображение получилось по центру листа. Как уже раньше говорилось, углы в прямоугольном виде изометрической проекции должны составлять 120 градусов.

Начинайте рисовать изометрию с именно верхней поверхности изображения предмета. От углов получившейся горизонтальной поверхности нужно провести две вертикальные прямые и отложить на них соответствующие линейные размеры предмета. В изометрической проекции все линейные размеры по всех трем осям будут оставаться кратны единице. Затем последовательно требуется соединить созданные точки на вертикальных прямых. В результате получиться внешний контур предмета.

Стоит учитывать, что при изображении любого предмета в изометрической проекции видимость криволинейных деталей будет обязательно искажаться. Окружность должна изображаться эллипсом. Отрезок между точками окружности (эллипса) по осям изометрической проекции должен быть равен диаметру окружности, а оси эллипса не будут совпадать с осями изометрической проекции.

Если изображаемый объект имеет скрытые полости ли сложные элементы, постарайтесь выполнить заштриховку. Она может быть простой либо ступенчатой, все зависит сложности элементов.

Запомните, что все построение должно выполнять строго с применением чертежных инструментов. Применяйте несколько карандашей с разными видами твердости.

Изображение изометрической проекции

Сама суть проекции состоит в том, что какой-либо существующий трехмерный объект или фигура отображается на изометрической плоскости, при этом сохраняется отношение длины спроектированных отрезков к действительной длине. Другими словами, коэффициент искажения остается неизменным по всем трем осям. Этим и отличается изометрическая проекция, так как только при ней все имеющиеся масштабы остаются одинаковыми.

Изометрическая проекция возможна при соблюдении условия, чтобы углы между осями проекции были одинаковыми и равны 120 градусам. У подобной проекции есть достоинство, благодаря чему ее так часто используют в различных чертежах и проектах. Причина кроется в том, что при изменении расстояния сами отражаемые объекты при этом не кажутся меньше или больше, чем они есть на самом деле.

Однако у изометрических проекций существуют и свои недостатки. Так, например, если на рисунке отсутствуют обозначающие тени на разных сторонах, то будет крайне сложно определить, какая из сторон фигуры на данный момент находится к нам ближе и, собственно, наблюдается. Кроме того, будет проблематично понять, где у объекта располагаются верхняя и нижняя грань, из-за наличия двух крайне схожих проекций, равных по площади и размерам.

Смотрите видео об окружности в изометрии.

От теории к практике

Свойства шестиугольника очень активно используются как в природе, так и в различных областях деятельности человека. В первую очередь это касается болтов и гаек — шляпки первых и вторые представляют собой ничто иное, как правильный шестигранник, если не брать в расчет фаски. Размер гаечных ключей соответствует диаметру вписанной окружности — то есть расстоянию между противоположными гранями.

Нашла свое применение и гексагональная плитка. Она распространена куда меньше четырехугольной, но класть ее удобнее: в одной точке смыкаются три плитки, а не четыре. Композиции могут получаться очень интересные:

Выпускается и бетонная плитка для мощения.

Распространенность гексагона в природе объясняется просто. Таким образом, проще всего плотно уместить круги и шары на плоскости, если у них одинаковый диаметр. Из-за этого у пчелиных сот такая форма.