Описание различных моделей горизонтально-расточных станков

Описание различных моделей горизонтально-расточных станков

Горизонтально-расточный станок, модели и технические характеристики которого могут быть разными, имеет следующее назначение:

  1. Растачивание отверстий.
  2. Сверление.
  3. Обтачивание деталей с цилиндрической формой.
  4. Обработка торцов изделий.
  5. Фрезерование.
  6. Зенкерование.
  7. Нарезка резьбы при помощи изделия с обозначением 2620В.

И это далеко не полный список операций, выполняемых установкой горизонтально-расточным станком. Благодаря чему можно использовать только один вид оборудования для проведения полного цикла изготовления деталей из заготовок. При многосерийном производстве это весьма удобный вариант, не требуется привлечения дополнительной техники.

Наличие шпинделя – одна из отличительных особенностей. Эта часть конструкции бывает горизонтальной, вертикальной. 1 горизонтально расположенный элемент встречается чаще всего.

Шпиндель используется для закрепления приспособлений с режущим действием на горизонтально-расточном станке 2620, включая:

  • зенкер;
  • сверла;
  • резцы;
  • фрезы и так далее.
  1. Об особенностях в конструктивном плане
  2. Работа – на каком принципе основывается?
  3. Какие модели получили распространение?
  4. Особенности модели 2620
  5. Информация о модификациях 2А622Ф4 и 2А622
  6. 2а614 – чем отличается модель?
  7. 2Л614 – о характеристиках оборудования
  8. Skoda W200 – чем хороша данная модель?

Сведения о производителе горизонтально-расточного станка 2620В

Производителем горизонтально-расточных станков моделей 2620В Ивановский завод тяжелого станкостроения, основанный в 1953 году.

21 ноября 1958 года введена в эксплуатацию первая очередь Ивановского завода расточных станков. В 1958 году был налажен выпуск узлов и комплектующих для ленинградского станкостроительного Завода имени Свердлова. Со временем, на заводе был начат выпуск простых горизонтально-расточных станков по чертежам того же завода. Оснастив производство необходимой базой, станкостроители перешли на производство более сложной продукции — обрабатывающих центров (ОЦ).

Станки производства Ивановского завода тяжелого станкостроения ИЗТС

Техперевооружение горизонтально-расточного станка

  • » onclick=»window.open(this.href,’win2′,’status=no,toolbar=no,scrollbars=yes,titlebar=no,menubar=no,resizable=yes,width=640,height=480,directories=no,location=no’); return false;» rel=»nofollow»> Печать

Цели проекта

Целью проекта является замена физически и морально устаревшего оборудования:

  • замена схемы Г-Д с ламповым усилителем электропривода подачи на современный цифровой преобразователь постоянного тока;
  • замена релейно-контакторной схемы управления и выбора подвижных органов на логическое устройство топа LOGO.

Описание объекта

Горизонтально-расточной станок 2620В установлен в цехе ЦЛМК ОАО «ЕВРАЗ НТМК». Станок выпущен в 1962 году. Электроснабжение станка выполнено от распределительного пункта РП-10 напряжением 0,4 кВ. Схема ввода питания остаётся неизменной и не полежит реконструкции в рамках настоящего проекта. Установленная мощность электрооборудования 21 кВт.

В состав станка входят:

  • двигатель подачи;
  • электромашинный усилитель (ЭМУ);
  • двигатель агрегата;
  • главный привод вращения шпинделя;
  • двигатель насоса смазки механизмов шпиндельной бабки;
  • двигатель поворота стола;
  • двигатель насоса механизма распределения передач.

Главный привод вращения шпинделя и планшайбы осуществляется от двухскоростного асинхронного двигателя через зубчатый редуктор. Для быстрой остановки и при управлении установочным поворотом используется динамическое торможение.

Привод подачи и установочных перемещений подвижных органов осуществляется от двигателя постоянного тока, работающего по схеме генератор-двигатель (Г-Д) с ламповым усилителем. В качестве генератора используется ЭМУ. Задание на скорость подаётся от независимого источника тока напряжением Uзад = 0,3 -120 В. Для измерения фактической скорости на валу двигателя установлен тахогенератор ПТ-1. Сравнение фактической скорости с заданной производится вычитанием из величины напряжения независимого источника величины напряжения тахогенератора. Полученная разность, пропорциональная отклонению фактической скорости от заданной, подаётся на вход лампового усилителя, к выходу которого подключены две обмотки ЭМУ. Схема управления обеспечивает диапазон регулирования скоростей двигателя подачи 1 — 800, с учётом ослабления потока 1 — 1800. Управление приводом подачи и выбор подвижных органов осуществляется релейно-контакторной схемой управления. Подключение подвижных органов к двигателю подач производится электромагнитными муфтами.

Объем реконструкции:

  • Полная замена схемы Г-Д с ламповым усилителем электропривода подачи;
  • Замена релейно-контакторной схемы управления и выбора подвижных органов;

При этом используются следующие технические решения:

  • существующая схема Г-Д с ламповым усилителем, схема управления и выбора подвижных органов, тахогенератор полностью демонтируются;
  • разрабатывается новый шкаф управления электроприводом подачи и управления и выбора подвижных органов (AM), имеющий степень защиты IP54. В шкафу используется современный цифровой преобразователь Sinamics DCM и логические модули LOGO. Шкаф устанавливается рядом с существующим шкафом управления;
  • для понижения напряжения в силовой цепи преобразователя используется трансформатор (типа ТСЗП-10), устанавливаемый рядом со шкафом управления AM;
  • используются схемные решения, обеспечивающие работу станка согласно паспорту на горизонтально-расточной станок 2620В и не приводящие к изменению способа управления с точки зрения оператора станка.

Описание схемы управления

Электропривод подачи выполнен на базе одного ДПТ типа ПБСГ-42 (1,9 кВт, 220 В, 1500/3600 об/мин, возбуждение 110 В, тахогенератор ПТ-1).

Для питания двигателя используется реверсивный ТП типа Sinamics DCM с номинальным выходным током З0А. В якорной цепи двигателя установлен быстродействующий предохранитель.

Силовое питание преобразователя производится от трансформатора через защитные быстродействующие предохранители и контактор, подключённый к релейному выходу преобразователя. Команду на включение контактора формирует преобразователь при необходимости включения механизма в работу.

Для улучшения динамических свойств электропривода тахогенератор ПТ-1 заменяется на инкрементальный энкодер ЛИР-158А.

Схема управления и выбора подвижных органов реализована на двух логических устройствах LOGO! 24RC с дополнительными модулями расширения LOGO! DM8 24R. Все органы управления и конечные выключатели станка подключаются к дискретным входам логических модулей через промежуточные реле. К выходам логических модулей подключаются электромагнитные муфты. Задания на скорость с оператора и вариатора подключаются к тиристорному преобразователю унифицированным сигналом с преобразователей MINI MCR-SL-S-UI (All, А12) и в зависимости от комбинации выходных сигналов модулей LOGO тиристорный преобразователь выбирает нужное задание на скорость.

Все алгоритмы управления реализованы в логических модулях LOGO!. Программирование модулей LOGO производится с встроенной панели или с программатора. Проектом предусмотрен программатор с программным обеспечением Logo!Soft Comfort (для программирования модулей Logo) и Starter (для параметрирования Sinamics DCM). Файлы с пользовательской программой для LOGO передаются на компакт диске.

Достигнутые результаты

В результате внедрения новой системы управления станком и приводом подачи было заменено физически и морально устаревшее оборудование, а также заменено оборудование снятое с производства, что позволило повысить надёжность работы станка, и значительно снизить потребление электроэнергии станком, уменьшила вероятность аварийных и внеплановых остановок. Внедрение обратной связи на базе инкрементного энкодера позволило увеличить точность задания перемещения заготовки. Уменьшилось количество опасных и вредных производственных факторов, таких как подвижные части производственного оборудования, повышенный уровень шума на рабочем месте (демонтирована система Генератор-Двигатель).

Техперевооружение горизонтально-расточного станка

  • » onclick=»window.open(this.href,’win2′,’status=no,toolbar=no,scrollbars=yes,titlebar=no,menubar=no,resizable=yes,width=640,height=480,directories=no,location=no’); return false;» rel=»nofollow»> Печать

Цели проекта

Целью проекта является замена физически и морально устаревшего оборудования:

  • замена схемы Г-Д с ламповым усилителем электропривода подачи на современный цифровой преобразователь постоянного тока;
  • замена релейно-контакторной схемы управления и выбора подвижных органов на логическое устройство топа LOGO.

Описание объекта

Горизонтально-расточной станок 2620В установлен в цехе ЦЛМК ОАО «ЕВРАЗ НТМК». Станок выпущен в 1962 году. Электроснабжение станка выполнено от распределительного пункта РП-10 напряжением 0,4 кВ. Схема ввода питания остаётся неизменной и не полежит реконструкции в рамках настоящего проекта. Установленная мощность электрооборудования 21 кВт.

Читайте также  Кромкогиб своими руками

В состав станка входят:

  • двигатель подачи;
  • электромашинный усилитель (ЭМУ);
  • двигатель агрегата;
  • главный привод вращения шпинделя;
  • двигатель насоса смазки механизмов шпиндельной бабки;
  • двигатель поворота стола;
  • двигатель насоса механизма распределения передач.

Главный привод вращения шпинделя и планшайбы осуществляется от двухскоростного асинхронного двигателя через зубчатый редуктор. Для быстрой остановки и при управлении установочным поворотом используется динамическое торможение.

Привод подачи и установочных перемещений подвижных органов осуществляется от двигателя постоянного тока, работающего по схеме генератор-двигатель (Г-Д) с ламповым усилителем. В качестве генератора используется ЭМУ. Задание на скорость подаётся от независимого источника тока напряжением Uзад = 0,3 -120 В. Для измерения фактической скорости на валу двигателя установлен тахогенератор ПТ-1. Сравнение фактической скорости с заданной производится вычитанием из величины напряжения независимого источника величины напряжения тахогенератора. Полученная разность, пропорциональная отклонению фактической скорости от заданной, подаётся на вход лампового усилителя, к выходу которого подключены две обмотки ЭМУ. Схема управления обеспечивает диапазон регулирования скоростей двигателя подачи 1 — 800, с учётом ослабления потока 1 — 1800. Управление приводом подачи и выбор подвижных органов осуществляется релейно-контакторной схемой управления. Подключение подвижных органов к двигателю подач производится электромагнитными муфтами.

Объем реконструкции:

  • Полная замена схемы Г-Д с ламповым усилителем электропривода подачи;
  • Замена релейно-контакторной схемы управления и выбора подвижных органов;

При этом используются следующие технические решения:

  • существующая схема Г-Д с ламповым усилителем, схема управления и выбора подвижных органов, тахогенератор полностью демонтируются;
  • разрабатывается новый шкаф управления электроприводом подачи и управления и выбора подвижных органов (AM), имеющий степень защиты IP54. В шкафу используется современный цифровой преобразователь Sinamics DCM и логические модули LOGO. Шкаф устанавливается рядом с существующим шкафом управления;
  • для понижения напряжения в силовой цепи преобразователя используется трансформатор (типа ТСЗП-10), устанавливаемый рядом со шкафом управления AM;
  • используются схемные решения, обеспечивающие работу станка согласно паспорту на горизонтально-расточной станок 2620В и не приводящие к изменению способа управления с точки зрения оператора станка.

Описание схемы управления

Электропривод подачи выполнен на базе одного ДПТ типа ПБСГ-42 (1,9 кВт, 220 В, 1500/3600 об/мин, возбуждение 110 В, тахогенератор ПТ-1).

Для питания двигателя используется реверсивный ТП типа Sinamics DCM с номинальным выходным током З0А. В якорной цепи двигателя установлен быстродействующий предохранитель.

Силовое питание преобразователя производится от трансформатора через защитные быстродействующие предохранители и контактор, подключённый к релейному выходу преобразователя. Команду на включение контактора формирует преобразователь при необходимости включения механизма в работу.

Для улучшения динамических свойств электропривода тахогенератор ПТ-1 заменяется на инкрементальный энкодер ЛИР-158А.

Схема управления и выбора подвижных органов реализована на двух логических устройствах LOGO! 24RC с дополнительными модулями расширения LOGO! DM8 24R. Все органы управления и конечные выключатели станка подключаются к дискретным входам логических модулей через промежуточные реле. К выходам логических модулей подключаются электромагнитные муфты. Задания на скорость с оператора и вариатора подключаются к тиристорному преобразователю унифицированным сигналом с преобразователей MINI MCR-SL-S-UI (All, А12) и в зависимости от комбинации выходных сигналов модулей LOGO тиристорный преобразователь выбирает нужное задание на скорость.

Все алгоритмы управления реализованы в логических модулях LOGO!. Программирование модулей LOGO производится с встроенной панели или с программатора. Проектом предусмотрен программатор с программным обеспечением Logo!Soft Comfort (для программирования модулей Logo) и Starter (для параметрирования Sinamics DCM). Файлы с пользовательской программой для LOGO передаются на компакт диске.

Достигнутые результаты

В результате внедрения новой системы управления станком и приводом подачи было заменено физически и морально устаревшее оборудование, а также заменено оборудование снятое с производства, что позволило повысить надёжность работы станка, и значительно снизить потребление электроэнергии станком, уменьшила вероятность аварийных и внеплановых остановок. Внедрение обратной связи на базе инкрементного энкодера позволило увеличить точность задания перемещения заготовки. Уменьшилось количество опасных и вредных производственных факторов, таких как подвижные части производственного оборудования, повышенный уровень шума на рабочем месте (демонтирована система Генератор-Двигатель).

Описание группы

Станки для обработки глубоких отверстий производства “ Рязанский станкостроительный завод” отвечают этим требованиям.

Исходя из разнообразных практических задач, были разработаны специальные станки различных типоразмеров и в различных конструктивных исполнениях.

Могут применяться следующие формы:

Конструктивная форма №1 (станок токарного исполнения):
Базирование вращающегося изделия в патроне бабки изделия и роликовых люнетах. Стебель с установленным инструментом крепится в стеблевой бабке. Обработка отверстий происходит не вращающимся инструментом.

Конструктивная форма №2 (Станок токарного исполнения):
Базирование вращающегося изделия в патроне бабки изделия и роликовых люнетах. В зависимости от технологических потребностей обработка может производиться при вращающемся изделии как не вращающимся, так и вращающимся инструментом.

Конструктивная форма №3 (Станок вертлюжного исполнения):
Базирование вращающегося изделия в патронах бабки изделия и роликовых люнетах. Торцы полых заготовок легкодоступны для измерений, смены инструмента; работы методом «вытяжного растачивания». Обработка происходит не вращающимся инструментом.

Конструктивная форма №4 (Станок вертлюжного исполнения):
Базирование вращающегося изделия в патронах бабки изделия и роликовых люнетах. Обработка может производится при вращающемся изделии как не вращающимся так и вращающимся инструментом.

Конструктивная форма №5 (Станок корпусного исполнения): Базирование не вращающегося изделия в приспособлениях. Обработка отверстий происходит вращающимся инструментом.

Эффективные способы обработки для достижения высокого качества.

бработка глубоких отверстий с высокой точностью и качеством поверхности считается трудной технологической операцией. Используются специальные методы обработки, удовлетворяющие высоким требованиям, предъявляемым к качеству обработки, и позволяющие значительно сократить технологическое время.

Методы обработки:

Кольцевое сверление:
Применяется при сверлении отверстий диаметром от 80 мм до 500 мм. Так как в данном случае высверливается только кольцевое пространство, то требуется меньше затраты энергии на резание. Возможно использование высверленного керна.

Растачивание:
Черновое и чистовое растачивание применяется для обработки предварительно отлитых или просверленных отверстий. Обеспечиваются требования по расположению оси отверстия, ее прямолинейности, точности диаметральных размеров и шероховатости поверхности.

Вытяжное растачивание:
Обеспечивает более точное расположение оси отверстия, а также применяется для изделий, в которых должна быть выдержана равномерная толщина стенок.

Раскатывание:
Если допуски должны быть меньше, а качество поверхности выше чем в перечисленных методах обработки, то дополнительно применяется раскатывание.

Высококачественное сверление возможно только при беспрерывном отводе стружки из зоны резания. Кроме того, температура при резании оказывает существенное влияние на срок службы инструментов. Оба фактора требуют высокопроизводительную установку СОЖ с объемным баком и мощной насосной установкой.

При сверлении станок работает с внешним подводом охлаждающей жидкости и внутренним отводом стружки, СОЖ подается между борштангой и стенкой изделия к лезвию инструмента. Удаление смеси из СОЖ и стружки осуществляется через внутреннюю полость штанги. Таким образом, исключается контакт между обрабатываемой поверхностью и стружкой, что способствует получению более качественной поверхности:

При растачивании широко применяется способ с наружным отводом стружки, для чего используется отверстие в заготовке, полученное на предыдущих операциях. СОЖ вместе со стружкой отводится в стружкоприемник. Через стружкоприемник СОЖ возвращается в общий резервуар и, таким образом, цикл заканчивается:

Читайте также  Станок для лего кирпича своими руками

Письменную заявку на покупку станка можно оставить на сайте в разделе Вопросы и Ответы

Купить станки для глубокого сверления и растачивания, расточные станки производства Рязанского Станкостроительного Завода можно только у официальных представителей РСЗ. Контактная информация на страницах:

Технологическое оборудование машиностроительных произ­водств

СТАНКИ СВЕРЛ ИЛ ЬНО-РАСТОЧНОЙ ГРУППЫ С ЧПУ

Производим и продаем электроприводы ЭТУ, ЭПУ для двигателей постоянного тока, тел./email +38 050 4571330 / rashid@msd.com.ua Назначение, классификация и конструктивные особенности свер­лильных и расточных станков с ЧПУ. Эти станки предназначены …

Повышение эффективности производства

Производим и продаем электроприводы ЭТУ, ЭПУ для двигателей постоянного тока, тел./email +38 050 4571330 / rashid@msd.com.ua Развитие производства во многом определяется техническим про­грессом машиностроения. Увеличение выпуска продукции машино­строения осуществляется за …

МНОГОЦЕЛЕВЫЕ СТАНКИ С ЧПУ

Многоцелевые станки (МС) — это станки, оснащенные УЧПУ и устройством автоматической смены инструментов, предназначенные для комплексной обработки за одну установку корпусных деталей и деталей типа тел вращения. МС выпускают с …

Алмазно-расточные станки

Применяются для прецизионного растачивания цилиндрических, конических поверхностей, канавок, торцов в условиях массового и крупносерийного производства. В результате получаются высококачественные поверхности с точными размерами и минимальными отклонениями от формы в следствии малых усилий резания стружки.
Примером деталей обрабатываемых на алмазно-расточных станках являются детали автомобильных двигателей, которые имеют отверстия различной формы и конфигурации.

Оборудование данного типа комплектуется 2 видами инструмента:

  • алмазный – для точения цветных металлов, пластмасс, вулканизированных каучуков и других синтетических материалов;
  • твердосплавный – служит для точения сталей и чугунов.

Использование алмазного инструмента дает такую же шероховатость поверхности как шлифование.
Процесс тонкого растачивания характеризуется такими параметрами:

  • шпиндель станка имеет высокую частоту вращения (до 8000 об/мин);
  • резание происходит при небольших подачах 0,01 – 0,1 мм/об и глубине резания 0,05 – 0,5 мм;
  • скорость резания в зависимости от материала колеблется в пределах 60 – 1000 м/мин;
  • шероховатость поверхности составляет Ra = 0,16 – 0,63 мкм;
  • отклонение от круглости составляет не более 0,003 – 0,005 мм.

При алмазном растачивании отсутствует эффект шаржирования – воздействие на поверхностный слой заготовок абразивными частицами, который возникает при шлифовании, хонинговании и доводке. Шаржирование уменьшает износостойкость обработанных заготовок.
К станкам предъявляют жесткие требования:

  • шпиндели должны обладать высокой частотой и точностью вращения с отсутствием вибраций;
  • подача должна регулироваться бесступенчато и иметь малые ее величины;
  • обладать высокой скоростью ускорения ходов.

Характер направления оси шпинделя делит оборудование данного типа на две группы:

  • вертикальной компоновки – являются универсальными с многоступенчатыми коробками скоростей и подач, имеют сменные шпиндели для точения заготовок диаметром от 20 до 200 мм в с небольшой программой выпуска, предназначены для растачивания блоков цилиндров дизельных и бензиновых двигателей, цилиндрических отверстий при ремонте и производстве деталей;
  • горизонтальной компоновки – применяются для окончательной расточки отверстий по форме и размерам, подрезки торцов.

Горизонтально-расточные станки

Наиболее распространенными моделями являются горизонтально-расточные станки. Они выполняют большинство стандартных операций, для них разработаны индивидуальные схемы изготовления.

Особенностью конструкции этого типа оборудования является расположение шпинделя — горизонтальное. Для выполнения процесса обработки необходимо вращение заготовки, что обеспечивает силовые агрегаты устройства. Во время работы происходит вращательно-поступательное движение шпинделя. Процедура расточки заготовки может выполняться несколькими способами движения подачи:

  • инструменту;
  • детали, которая крепится на столе;
  • с помощью специальной подвижной подложки.

Дополнительно в комплектации оборудования могут быть предусмотрены устройства перемещения шпиндельной бабки, смещение стола относительно двух координат, плавное переключение скоростей и т.д. Все зависит от конкретной модели оборудования.

Практически любой фрезеровальный станок можно модифицировать для выполнения дополнительных функций. Но эти изменения не должны повлиять на его работоспособность.

Обработка заготовок

Для обработки деталей понадобится специальный инвентарь. В большинстве случаев пользуются расточными головками, монтирующимися в разные приспособления. У головок имеется цельнометаллическая державка хвостовика; на ней разместился паз, перемещающий резец ползуна.

А также часто применяется приспособление, позволяющее заниматься выполнением эффективного и быстрого растачивания пресс-форм (их матриц). Заготовка ставится на столе и фиксируется с двух сторон болтами прижимами. Полость матрицы обрабатывается посредством квадратной регулирующей головки. Ее дополняют кольцо-регулятор со шкалой, снизу — паз. По нему передвигается ползун с резцом на держателе. Микровинты позволяют настроить головку. Стоит отметить, что головки используются не во всех механизмах подобного типа.

Расточное оборудование имеет ряд важных достоинств:

  • Простота и универсальность технологической оснастки.
  • Повышенная производительность.
  • Уменьшенная длительность производственного цикла.
  • Быстрая подготовка оборудования к переориентированию на выпуск новых деталей.