Удельное давление на грунт

Удельное давление на грунт

На вездеходной технике в качестве движителя часто используются гусеницы или шины сверхнизкого давления. Их основная задача — уменьшить удельное давление на грунт за счет увеличения площади опоры. Ничего сложного тут нет, по такому же принципу работают обычные лыжи. Если на лыжах человек может спокойно идти по снегу, то без них он сразу проваливается, т.к. площадь опоры уменьшается в несколько раз, а давление на снег, соответственно, увеличивается. Рассмотрим подробнее, как рассчитывается удельное давление на грунт, в чем измеряется и как его можно уменьшить на практике.

Зависимость выбора метода возведения фундаментных стен от величины давления грунта

Чтобы повлиять на достоверность прочностных характеристик фундамента, перед возведением стен стоит тщательно исследовать почву в условиях трехосного сжатия. Это значит, что мастеру необходимо будет ознакомиться с методиками полевых определений информации о фильтрации, прочности и деформируемости. На основании полученных данных можно задумываться о том, какой метод возведения фундаментной стены окажется наиболее приемлемым и безопасным.

Чтобы избавиться от давления существует несколько техник для обустройства здания

Давление, вызванное нагрузкой на поверхность грунта

Предполагается, что давление из-за нагрузок на грунт можно получить, умножив давление Pґ(z) на соответствующий коэффициент Ko, Ka, Kp или их комбинацию, аналогично давлению грунта.

В зависимости от выбранных норм используются следующие методы и факторы распределения нагрузки:

Равномерная

PN-83/B-03010: α=Φ, β=45+Φ/2, а также P1= 0 и P2 =K q

PN-85/S-10030: α=Φ, β=45+Φ/2, а также P1=K q и P2 =K q

SETRA (Франция): α=Φ, β=45+Φ/2, а также P1= K q и P2 =K q

RD 31.31.27-81 (Россия): алгоритм отсутствует.

Линейные

PN-83/B-03010: α=Φ, β=45+Φ/2, а также P3= K Q и P4 =0

PN-85/S-10030: α=Φ, β=45+Φ/2, а также P3= K Q и P4 =K Q

SETRA (Франция): α=Φ, β=45+Φ/2, а также P3= K Q и P4 =K Q

RD 31.31.27-81 (Россия): α=45+Φ/2, β=45+Φ/2, а также P3= K Q и P4 =K Q

Равномерно распределенная

PN-83/B-03010: α=γ=Φ, β=δ=45+Φ/2, а также P1=P4=0 и P2=P3=K q

PN-85/S-10030: α=Φ, β=45+Φ/2, а также P1=P4= P2=P3=K q

SETRA (Франция): α=Φ, β=45+Φ/2, а также P1=P4= P2=P3=K q

RD 31.31.27-81 (Россия): α=45+Φ/2, β=45+Φ/2, а также P1=P4= P2=P3=K q

Связность грунта

При рассмотрении давления грунта, силы связности грунта игнорируются. При расчетах связность грунта не всегда принимается во внимание. Связность грунта позволяет выполнять грунтовые работы без использования подпорных элементов. Связность действует в направлении, перпендикулярном смещению подпорного элемента, уменьшая, таким образом, действие грунта на стену. Величина давления, вызванного связностью, постоянна для заданного грунта и равна:

где c обозначает связность грунта, а коэффициент Kc равен:

Связность рассматривается только для связных грунтов.

Спорная методика расчета нагрузки на фундамент

Методики расчета во многих источниках практически одинаковые. Но иногда попадаются некоторые противоречивые особенности. Цитата :

«Нагрузка кровли распределяется между теми сторонами фундамента, на которые через стены опирается стропильная система. Для обычной двускатной крыши это обычно две противоположные стороны фундамента, для четырехскатной – все четыре стороны. Распределенная нагрузка кровли определяется по площади проекции крыши, отнесенной к площади нагруженных сторон фундамента, и умноженной на удельный вес материала.»

По такой же методике, где во внимание берутся только две стороны фундамента, предлагается просчитывать снеговые нагрузки и нагрузки от перекрытий. Но это не совсем верно:

  • Кровельная нагрузка (удельный вес материала) используется для определения оптимального шага и сечения стропил, обрешетки.
  • Нагрузка может распределятся на те участки стены или мауэрлат, где закреплены стропильные ноги, но далее, благодаря армированному поясу, стенам и фундаменту, она равномерно распределяется по всей подошве фундамента.

Поэтому, при определении нагрузок на фундамент, в том числе ветровых, снеговых и от перекрытий, нужно учитывать всю площадь опирания на грунт.

Технические характеристики материалов при строительстве стен фундамента

Бетон

Бетон самый распространённый и недорогой способ строительства фундаментных стен. Недостатком, причем довольно существенным, является обрушение грунта в ходе работ, после чего он смешивается с бетоном, снижая прочность состава.

Таким образом, снижается устойчивость самого фундамента и его стен.

Кирпич

Кирпич – один из старейших применяемых материалов. Легкий при монтаже, удобный в строительстве, обладающий массой достоинств, кирпич имеет все же конструктивный недостаток при постройке – невозможность укладки без скрепляющего раствора. Как правило, в его качестве выступает бетон, намазываемый тонким слоем в промежутках между блоками кирпича.

Камни

Как и в случае кирпичей, монтаж камней требует соединительной смеси при монтаже, хотя камень сам по себе очень надежен и прочен. К тому же, при помощи этого материала можно и выкладывать узоры при строительстве внешних стен, и декора внутренних помещений.

В качестве скрепляющего раствора выступает бетон, но ещё один недостаток — высокая цена такого материала.

Железобетонные пластины

Пластины из железобетона обладают повышенной прочностью и устойчивостью.

Возведенный подвал или погреб будет иметь в таком случае необычайно долгий срок использования. За счет применения арматуры или армирующей сетки конструкции придается прочное сцепление, что гораздо лучше, чем использование для этих целей бетона.

При монтажных работах необходимо быть очень осторожными, поскольку из-за значительного веса такого материала любая неосторожность может вести к печальным последствиям.

Расчет несущей способности грунта

Определение несущей способности грунта – это достаточно трудоемкий процесс, который можно выполнить подручными средствами (вручную/онлайн) или же воспользоваться услугами геолого-геодезических агенств. Если вы хотите сэкономить и выполнить расчет самостоятельно – KALK.PRO поможет вам в этом нелегком деле!

Мы предлагаем вам воспользоваться нашим удобным онлайн-калькулятором расчета сопротивления грунта на сжатие/сдвиг. По окончанию вычисления вы получите значение расчетного сопротивления в четырех разных единицах измерения (кПа, kH/m 2 , тс/м 2 , кгс/см 2 ). Для того чтобы получить результат расчета, вам необходимо заполнить несколько полей:

  • Тип расчета. На основании лабораторных испытаний или при неизвестных характеристиках грунта.
  • Характеристики грунта. Тип, коэффициент пористости и показатель текучести, а также осредненное расчетное значение удельного веса грунтов.
  • Параметры фундамента. Ширина основания и глубина заложения.

Последние две характеристики грунта определяются только для глинистых грунтов.

Калькулятор расчетного сопротивления грунта основания

Для начала нам необходимо выбрать тип расчета. Первый вариант подразумевает, что вы получите отдадите образец грунта в специализированную лабораторию на исследование. Данный способ занимает большое количество времени и средств. Поэтому если у вас не сложный участок и вы уверены, что сможете сделать все своими силами, мы предлагаем воспользоваться вторым вариантом и выполнить расчет на основании табличных данных.

Классификация грунтов

Следующий этап работ связан с определением типа грунта. Согласно СНиП 11-15—74, все виды грунтов делятся на две основные группы:

Первые, представлены горными породами, метаморфического или гранитного происхождения. Встречаются в горных областях и в местах выхода основания тектонической платформы на поверхность (щиты). В нашей стране это территория Карелии и Мурманской области. Горные системы Урала, Кавказа, Алтая, Камчатки, плоскогорья Сибири и Дальнего Востока.

Читайте также  Зажигание мб 1

Сопротивление скальных грунтов настолько высоко, что вы можете не производить никаких предварительных расчетов.

Нескальные грунты встречаются повсеместно на равнинах. Они подразделяются на несколько видов, а те в свою очередь на фракции:

Как определить тип грунта самостоятельно?

Существует простой дедовский способ определения типа грунта, которым пользовались ваши родители и родители ваших родителей – он заключается в выявлении физико-механических свойств породы.

Для этого необходимо провести отбор проб почвы в крайних точках и в середине участка. Выкопайте ямы на глубину, предполагаемого уровня заложения фундамента и возьмите образецы грунта с каждой контрольной точки.

Подготовьте рабочую поверхность, для того чтобы провести научный эксперимент.

  • Намочите почву до состояния, когда из нее можно будет сформировать шар.
  • Попробуйте раскатать шар в продолговатое тело (шнур).
    • Если у вас не получилось этого сделать, то перед вами песчаная почва.
    • Если немного схватывается, но все равно разрушается – это супесь.
    • Если шнур удается свернуть в кольцо, но наблюдаются разрывы/трещины – это суглинок.
    • Если кольцо замкнулось, а тело осталось невредимым – это глина.

Для наглядности можно посмотреть иллюстрацию ниже:

Если вам не удалось ничего сделать из образца грунта, то для вас расчет несущей способности песчаного грунта закончился. Выберите соответствующий пункт в калькуляторе и нажмите «Рассчитать«.

Принцип измерения удельного давления на грунт

Самый простой способ понять, как распределяется опорное давление – представить передвижение по снежным сугробам. Пешком человеку необычайно трудно преодолевать сугробы метровой глубины. Но что произойдёт, если он встанет на лыжи? Опорное давление перестанет быть точечным, и распределиться на несколько метров в длину. Кажется, что удельное давление таким образом может сниться в 1,5-2 раза, но в действительность оно снизится ровно в 15 раз. С 0,60 до 0,04.

Для вычисления удельного давления на грунт достаточно разделить фактический вес объекта на площадь опоры. Если речь идёт об автомобиле, то площадь всех его колёс может достигать, например, 1 метра квадратного. То есть, 1000 кв. см. Для упрощения представим, что масса машины – ровно 1,5 тонны. Разделив 1500 кг на 1000 кв. см., получаем 1,5 кг на квадратный сантиметр удельного давления.

Соответственно, чем ниже вес агрегата, и чем больше площадь контакта, тем ниже давление. И если механику-водителю танка глубоко плевать на то, что будет с почвой, по которой он проедет, то оператор трактора сильно обеспокоен этим вопросом. Точнее обеспокоен его работодатель, который не сможет выращивать сельхозкультуры на загубленном поле, и потеряет деньги.

Способы уменьшения давления на грунт

Для сельскохозяйственной техники низкое удельное давление на почву – ключевой фактор. Всё земледелие базируется на здоровой структуре почвы и качественном усвоении микроэлементов растениями. При этом для обработки этой самой почвы, внесения удобрений и семян нередко используется крупногабаритная техника.

Чтобы экономить драгоценное время, крупные хозяйства используют мощные европейские тракторы именитых марок и соответствующее прицепное оборудование. Оно может охватывать в ширину сразу 10 и более метров площади за один проход. Естественно вместе с мощью растёт и вес агрегатов, что становится серьёзной проблемой на слабонесущих, нежных грунтах. Уплотнения на большой глубине чреваты гибелью посевов и потерями огромных прибылей. При этом исправить их вспашкой невозможно, ибо речь идёт о глубине в 1,5-2 метра.

На сегодняшний день человеку доступны 4 способа снизить удельное давление:

  1. Увеличить диаметр колёс;
  2. Использовать шины максимально низкого давления;
  3. Увеличить количество колёс;
  4. Использовать резиновые гусеничные траки.

Каждый из вариантов имеет ряд преимуществ и помогает многократно снизить удельное давление. Однако выгода у перечисленных вариантов не равнозначна. Очевидно, что к крупным гусеничным тракам на резиновой основе по эффективности не может приблизиться ни один другой способ. Какими бы огромными и широкими ни были колёса, они всё равно заметно повышают вес техники. Тем самым снижая собственную эффективность.

С гусеницами, как у John Deere 8RT вес ещё и грамотно балансируется между двигателем спереди, и намеренно увеличенной рамой для передачи веса на кормовую часть трактора.

Что такое пучение грунта

Перекошенные дверные коробы, трещины на стенах и щели в оконных коробах — следствие деформационных влияний, оказываемых грунтом на основание дома.

Деформационные нагрузки почвы на основание происходят в результате сезонного промерзания грунта — так называемого морозного пучения.


Рис 1.1: Трещины в цоколе — характерный признак воздействия сил пучения на фундамент дома

Пучениеэто изменение объема почвы, происходящее в следствии замерзания грунтовых вод, которыми она пропитана.

Совет эксперта! Расширение объема почвы обуславливается тем, что номинальная плотность воды в жидком состоянии составляет 1000 килограмм на кубометр, тогда как плотность льда — 917 кг/м3.

При наступлении сезонных морозов происходит следующее: согласно законам физики масса жидкости после замерзания остается неизменной, однако ее объем расширяется почти на 9%, в результате это расширения влага оказывает давление на почву — поскольку движение почвы вниз невозможно, из-за высокой плотности нижерасположенных слоев грунта, грунт движется вверх и поднимает фундамент здания.


Рис. 1.2: Почва, увеличившаяся в объеме в результате морозного пучения

Выделяют два характера воздействий морозного пучения на основание дома:

  • Вертикальное выталкивающее воздействие — происходит вследствие пучения слоев почвы, расположенных под основанием здания;
  • Касательное пучение — это выталкивающее воздействие, которое происходит вследствие пучения грунта, контактирующего с боковыми стенками фундамента.

Как бороться с силами пучения?

Для защиты от морозного пучения существует несколько способов: замена грунта на непучинистый, удаление влаги из грунта, утепление грунта. Замена грунта на непучинистый (т.е. на песчаный) возможна при заложении фундамента. Под его основание укладывают подушку из утрамбованного песка высотой около 30 см и шириной на 20 см больше, чем ширина фундамента. Смысл этой подушки в том, чтобы, во-первых, равномернее распределить нагрузку от фундамента, во-вторых, уменьшить действие нормальной составляющей сил пучения на мелкозаглубленный фундамент. Здесь надо понимать, что песчаная подушка снижает действие пучения не за счет того, что песок непучинистый грунт, а за счет уменьшения слоя пучинистого грунта. Если при глубине промерзания 1,5 м укладывать фундамент на глубину 1 м, то слой пучинистого грунта составит 50 см а его возможное увеличение до 5 см. Если под тот же фундамент делать песчаную подушку 30 см, то слой пучинистого грунта составит уже не 50 см а 30 см, и его возможное увеличение будет не больше 3 см. Непучинистый грунт также рекомендуется использовать для обратной засыпки после того, как фундамент залит и опалубка с него снята. Так в непосредственном контакте с фундаментом будет находиться непучинистый грунт, не содержащий влаги, который не будет примерзать к его стенкам. Со временем (через несколько лет) песок в обратной засыпке и в подушке может заилиться: частички глины из окружающего грунта будут попадать в него, и он потеряет свои непучинистые свойства. Для защиты от заиливания песчаную подушку и обратную засыпку нужно отделить от остального грунта пленкой или фильтрующей тканью.

Читайте также  Мангалы из кирпича

Другая мера по борьбе против пучения — это удаление влаги, в свою очередь эту меру можно разделить на две составляющих — защита от попадания влаги с атмосферными осадками и удаление уже имеющейся влаги. Чтобы оградить грунт вокруг фундамента от осадков в виде дождя и тающего снега по всему периметру дома нужно делать отмостку. Ее ширина должна быть больше ширины обратной засыпки, чтобы вода отводилась подальше от фундамента.

Утепление грунта вокруг дома позволяет уменьшить или вообще исключить промерзание земли. Благодаря утеплению грунта становится возможно строительство мелкозаглубленных фундаментов за счет искусственного уменьшения глубины промерзания. Однако это возможно только в областях, где среднегодовая температура положительная. Ширина полосы утеплителя должна соответствовать глубине промерзания: если земля промерзает на 1,5 м, то утеплять надо вокруг дома полосу шириной 1,5 м. Толщина утеплителя зависит от его теплоизоляционных свойств и от климатических условий.

Еще одна мера по защите фундамента от морозного пучения, применяемая при строительстве любых видов фундаментов, — это сделать его поверхность более гладкой. Сам по себе бетон — пористый материал, и с его поверхностью грунт хорошо смерзается и при пучении сильно воздействует на него. Самый простой способ устранить это — прокладывать рубероид между поверхностью фундамента и грунтом. Рубероид более гладкий материал, и движущийся грунт будет по нему скользить, и касательная составляющая силы пучения значительно снижается.

Промерзание грунта приводит к его пучению и негативному воздействию на фундамент здания. Глубина промерзания зависит от типа грунта и климатических условий.

В этой статье рассмотрены основные типы грунтов — скальный, крупнообломочный, песчаный и глинистый, каждый из которых имеет свои свойства и отличительные признаки.

Пучинистый грунт – это такой грунт, который подвержен морозному пучению, при промерзании он значительно увеличивается в объеме. Силы пучения достаточно велики и способны поднимать целые здания, поэтому закладывать фундамент на пучинистом грунте без принятия мер против пучения нельзя.

Несущая способность грунтов – это его основанная характеристика, которую необходимо знать при строительстве дома, она показывает какую нагрузку может выдержать единица площади грунта. Несущая способность определяет, какой должна быть опорная площадь фундамента дома: чем хуже способность грунта выдерживать нагрузку, тем больше должна быть площадь фундамента.

Грунтовые воды – это первый от поверхности земли подземный водоносный слой, который залегает выше первого водоупорного слоя. Они оказывают негативное воздействие на свойства грунта и фундаменты домов, уровень грунтовых вод необходимо знать и учитывать при заложении фундамента.