Особенности конденсатора переменного и постоянного тока

Особенности конденсатора переменного и постоянного тока

Конденсатор в цепи переменного тока или постоянного, который нередко называется попросту кондёром, состоит из пары обкладок, покрытых слоем изоляции. Если на это устройство будет подаваться ток, оно будет получать заряд и сохранять его в себе некоторое время. Емкость его во многом зависит от промежутка между обкладками.

  • Принцип работы
  • Описание конденсатора постоянного тока
  • Особенности устройства с переменным электротоком

Благодаря фазовым векторам сложный и меняющийся во времени сигнал можно представить в виде комплексного числа (не зависит от времени) и сложного сигнала (зависит от времени). Фазоры делятся на основе А (амплитуды), v (частоты) и θ (фазы). Это приносит большую пользу, ведь частотный коэффициент часто выступает общим для всех компонентов линейной комбинации синусоид. В подобных ситуациях факторы исключают факультативную характеристику и основываются лишь на A и θ.

К примеру, можно представить A⋅cos (2πνt + θ) просто как комплексную постоянную Ae i θ . Из-за того, что фазовые векторы передаются величиной и углом, наглядно изображаются вектором в плоскости x-y.

Фазор можно рассматривать с позиции вектора, вращающегося вокруг начала координат. Косинусная функция – проекция вектора на ось. Амплитуда выступает модулем вектора. Постоянная фазы – угол, сформированный вектором и осью при t = 0

Векторная диаграмма токов в цепи с конденсатором

Для определения действующей величины общего тока I методом векторного сложения построим векторную диаграмму согласно уравнению

Действующие величины составляющих тока:

Первым на векторной диаграмме изображается вектор напряжения U (рис. 13.16, а), его направление совпадает с положительным направлением оси, от которой отсчитываются фазовые углы (начальная фаза напряжения φa =0). Вектор IG совпадает по направлению с вектором U, а вектор IC направлен перпендикулярно вектору U с положительным углом. Из векторной диаграммы видно, что вектор общего напряжения отстает от вектора общего тока на угол φ, величина которого больше нуля, но меньше 90º. Вектор I является гипотенузой прямоугольного треугольника, катеты которого — составляющие его векторы IG и IC : При напряжении u = Umsinωt соответствии с векторной диаграммой уравнение тока

i = Imsin(ωt + φ)

По теме: методические разработки, презентации и конспекты

Урок «Конденсатор в цепи переменного тока»: * Использована технология проблемного обучения; *Представлены варианты демонстрационных опытов.

Урок изучения нового материала. Форма организации обучения новому материалу на уроке осуществляется на основе комлексного подхода к использованию современных информационных технологий и демонстрационн.

Урок изучения нового материала. Форма организации обучения новому материалу на уроке осуществляется на основе комлексного подхода к использованию современных информационных технологий и демонстрационн.

Презентация к уроку физики «Цепь переменного тока, содержащая ёмкостное сопротивление».

Цель урока: Раскрыть физическую сущность процессов, происходящих при резонансе напряжений и научить учащихся применять основные закономерности электрического резонанса при решении физических задач; ра.

Цель урока: Раскрыть физическую сущность процессов, происходящих при протекании переменного тока через конденсатор. Рассмотреть основные особенности емкостного сопротивления и научить учащихся произво.

Лекции и презентации для учебной дисциплины «Электротехника и электроника», тема «Однофазные цепи переменного тока», 2 курс, СПО.Содержит лекционный материал, задачи, задания для в.

Следующие эксперименты можно проводить в домашней лаборатории. Они демонстрируют, как будет работать конденсатор с разными источниками питания.

Цепь постоянного тока

При подключении к аккумулятору накопление энергии происходит. Однако протекание тока в цепи блокирует диэлектрик.

Цепь переменного тока

Собрав простую схему, можно увидеть отличия входного и выходного сигнала. По мере увеличения частоты на определенном уровне амплитуды становятся равными, а фазы совпадут.

Включение в цепи синусоидальной ЭДС

Виды включений

Конденсатор в цепи постоянного тока (без переменной составляющей) работать, как известно, не может.

Обратите внимание! Это утверждение не касается сглаживающих фильтров, где протекает пульсирующий ток, а также специальных блокирующих схем.

Совершенно иная картина наблюдается, если рассматривать включение этого элемента в цепи переменного тока, в которой он начинает вести себя более активно и может выполнять сразу несколько функций. В этом случае конденсатор может использоваться в следующих целях:

  • Для блокировки постоянной составляющей, всегда присутствующей в любой электронной схеме;
  • С целью создания сопротивления на пути распространения высокочастотных (ВЧ) компонентов обрабатываемого сигнала;
  • Как ёмкостной нагрузочный элемент, задающий частотные характеристики схемы;
  • В качестве элемента колебательных контуров и специальных фильтров (НЧ и ВЧ).

Из всего перечисленного сразу видно, что в подавляющем большинстве случаев конденсатор в цепи переменного тока используется как частотно-зависимый элемент, способный оказывать определённое влияние на протекающие по ней сигналы.

Простейший тип включения

Происходящие при таком включении процессы приведены на размещённом ниже рисунке.

Эпюры переменных процессов

Они могут быть описаны путём введения понятия гармонической (синусоидальной) ЭДС, выражаемой как U = Uo cos ω t, и выглядят следующим образом:

  • При нарастании переменной ЭДС конденсатор заряжается протекающим по нему электрическим током I, максимальным в начальный момент времени. По мере заряда ёмкости величина зарядного тока постепенно уменьшается и полностью обнуляется в тот момент, когда ЭДС достигает своего максимума;

Важно! Такое разнонаправленное изменение тока и напряжения приводит к образованию между ними характерного для этого элемента сдвига фаз на 90 градусов.

  • На этом первая четверть периодического колебания заканчивается;
  • Далее синусоидальная ЭДС постепенно убывает, вследствие чего конденсатор начинает разряжаться, и в это время в цепи протекает нарастающий по амплитуде ток. При этом наблюдается то же отставание его по фазе, что было в первой четверти периода;
  • По завершении этой стадии конденсатор полностью разряжается (при этом ЭДС равна нулю), а ток в цепи достигает максимума;
  • По мере нарастания обратного (разрядного) тока ёмкость перезаряжается, вследствие чего ток постепенно снижается до нуля, а ЭДС достигает своего пикового значения (то есть весь процесс возвращается в исходную точку).

Далее все описанные процессы повторяются с периодичностью, задаваемой частотой внешней ЭДС. Сдвиг по фазе между током и ЭДС может рассматриваться как некое сопротивление изменению напряжения на конденсаторе (отставание его от токовых колебаний).

Урок 45. Лабораторная работа № 11. Исследование зависимости силы тока от электроемкости конденсатора в цепи переменного тока

  • » onclick=»window.open(this.href,’win2′,’status=no,toolbar=no,scrollbars=yes,titlebar=no,menubar=no,resizable=yes,width=640,height=480,directories=no,location=no’); return false;» rel=»nofollow»> Печать
  • E-mail

Лабораторная работа №11

Исследование зависимости силы тока от электроёмкости конденсатора в цепи переменного тока

Цель работы: изучить влияние электроёмкости на силу переменного тока.

Оборудование: набор неполярных конденсаторов известной ёмкости, регулируемый источник переменного тока ЛАТР, миллиамперметр с пределом измерения до 100 мА переменного тока, вольтметр с пределом измерения до 75 В переменного напряжения, соединительные провода.

Теория

Постоянный ток не проходит через конденсатор, так как между его обкладками находится диэлектрик. Если конденсатор включить в цепь постоянного тока, то после зарядки конденсатора ток в цепи прекратится.

Если же включить конденсатор в цепь переменного тока, то заряд конденсатора (q=CU) вследствие изменения напряжения непрерывно изменяется, поэтому в цепи течёт переменный ток. Сила тока тем больше, чем больше ёмкость конденсатора и чем чаще происходит его перезарядка, т.е. чем больше частота переменного тока.

Читайте также  Г образная кухня гостиная

Сопротивление, обусловленное наличием электрической ёмкости в цепи переменного тока, называют ёмкостным сопротивлением XC. Оно обратно пропорционально ёмкости С и круговой частоте ω:

или, с учётом, что ω=2πν, где ν- частота переменного тока, (1).

Из закона Ома для участка цепи переменного тока, содержащего ёмкостное сопротивление, действующее значение тока в цепи равно: (2).

Из формулы (2) следует, что в цепи с конденсатором переменный ток изменяется прямо пропорционально изменению ёмкости конденсатора при неизменной частоте тока.

Графически зависимость силы тока от электроёмкости конденсатора в цепи переменного тока изображается прямой линией (рис.1).

В этом и предстоит убедиться опытным путём в данной работе.

1. Собрать электрическую схему согласно рисунка 2 и перечертить её в тетрадь:

2. Подготовить таблицу для результатов измерений и вычислений:

Роль диэлектрика в конденсаторе

Для увеличения емкости конденсатора между обкладками помещают диэлектрик. В нормальном состоянии в диэлектрике электроны вращаются по круговым орбитам. Если диэлектрик поместить в электрическое поле,то орбиты электронов вытягиваются в направлении полюсов поля и молекулы становятся диполями, т.е. частицами, которые на концах заряжаются противоположными зарядами.

Диполи, которые находятся внутри диэлектрика, нейтрализуются между собой, а заряды возле края остаются нескомпенсированными, т.е. не нейтрализованные, но не свободные, как в металле, и связанные с веществом. Их называют фиктивными зарядами. Это явление называется поляризацией диэлектрика.

Посмотрим, что происходит в заряженном конденсаторе без диэлектрика и с диэлектриком.

Без диэлектрика на обкладках заряды расположены не особенно плотно относительно друг к другу, т.к. расстояние между обкладками большое и силы притяжения зарядов мало.

Когда поместим в конденсатор диэлектрик в нем произойдет поляризация и фиктивные заряды окажутся на очень близком расстоянии от зарядов на обкладках, а значит и силы притяжения увеличится. Диполи диэлектрика как бы «подтягивают» заряды на край обкладок и уплотняют их, освобождая место для других зарядов, т.е. увеличивая емкость конденсатора.
Можно сделать вывод: чем больше поляризация диэлектрика,тем больше увеличивается емкость конденсатора.

Степень поляризации характеризуется относительной диэлектрической проницаемостью (ε) , показывающая во сколько раз увеличивается емкость плоского конденсатора, если применить данный диэлектрик вместо вакуума. Эта величина у разных диэлектриков различна. Для стекла она равна 3-12, слюды — 6-8, воздуха — 1, и т.д. Но есть вещества сегнетоэлектрики, у которых диэлектрическая проницаемость составляет величину от 50 до 100000. Они применяются в конденсаторах малых габаритов, но большой емкости.

Диэлектрики для изготовления конденсаторов должны иметь не только большую проницаемость, но и иметь большую электрическую прочность, т.е. не допустить пробоя при значительных напряжениях. Так же при использовании конденсаторов в высокочастотных цепях они должны иметь небольшие потери от переориентации молекул диэлектрика, что приводит к его нагреву и потери энергии.

Емкость плоского конденсатора равна:

C=8,85·10¹²·ε·S/d,

где: ε – относительная диэлектрическая проницаемость диэлектрика; S – площадь одной из обкладок в квадратных метрах; d – расстояние между обкладками в метрах.

Реактивное сопротивление конденсатора.

Электрический ток в конденсаторе представляет собой часть или совокупность процессов его заряда и разряда – накопления и отдачи энергии электрическим полем между его обкладками.

В цепи переменного тока, конденсатор будет заряжаться до определённого максимального значения, пока ток не сменит направление на противоположное. Следовательно, в моменты амплитудного значения напряжения на конденсаторе, ток в нём будет равен нулю. Таким образом, напряжение на конденсаторе и ток всегда будут иметь расхождение во времени в четверть периода.

В результате ток в цепи будет ограничен падением напряжения на конденсаторе, что создаёт реактивное сопротивление переменному току, обратно-пропорциональное скорости изменения тока (частоте) и ёмкости конденсатора.

Если приложить к конденсатору напряжение U, мгновенно начнётся ток от максимального значения, далее уменьшаясь до нуля. В это время напряжение на его выводах будет расти от нуля до максимума. Следовательно, напряжение на обкладках конденсатора по фазе отстаёт от тока на угол 90 °. Такой сдвиг фаз называют отрицательным.

Ток в конденсаторе является производной функцией его заряда i = dQ/dt = C(du/dt).
Производной от sin(t) будет cos(t) либо равная ей функция sin(t+π/2).
Тогда для синусоидального напряжения u = U ampsin(ωt) запишем выражение мгновенного значения тока следующим образом:

i = U ampωCsin(ωt+π/2).

Отсюда выразим соотношение среднеквадратичных значений .

Закон Ома подсказывает, что 1/ωC есть не что иное, как реактивное сопротивление для синусоидального тока:

Реактивное сопротивление конденсатора в технической литературе часто называют ёмкостным. Может применяться, например, в организации ёмкостных делителей в цепях переменного тока.

Онлайн-калькулятор расчёта реактивного сопротивления

Необходимо вписать значения и кликнуть мышкой в таблице.
При переключении множителей автоматически происходит пересчёт результата.